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Preface

The International Conference on Cognitive Modeling (ICCM) is the premier conference for research on

computational models and computation-based theories of human cognition. ICCM is a forum for pre-

senting and discussing the complete spectrumof cognitivemodeling approaches, including connection-

ism, symbolic modeling, dynamical systems, Bayesian modeling, and cognitive architectures. Research

topics can range from low-level perception to high-level reasoning. In 2017 we for the first time jointly

held our conference with the Society for Mathematical Psychology. The 15th ICCMwas held at the Uni-

versity of Warwick in Coventry, United Kingdom, on July 22nd-25th, 2017.

All papers and abstracts in the ICCM 2017 proceedings may be cited as follows:
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Abstract

We present a computational evaluation of three hypotheses
about sources of deficit in sentence comprehension in apha-
sia: slowed processing, intermittent deficiency, and resource
reduction. The ACT-R based Lewis and Vasishth (2005) model
is used to implement these three proposals. Slowed processing
is implemented as slowed default production-rule firing time;
intermittent deficiency as increased random noise in activa-
tion of chunks in memory; and resource reduction as reduced
goal activation. As data, we considered subject vs. object rela-
tives whose matrix clause contained either an NP or a reflexive,
presented in a self-paced listening modality to 56 individuals
with aphasia (IWA) and 46 matched controls. The participants
heard the sentences and carried out a picture verification task
to decide on an interpretation of the sentence. These response
accuracies are used to identify the best parameters (for each
participant) that correspond to the three hypotheses mentioned
above. We show that controls have more tightly clustered (less
variable) parameter values than IWA; specifically, compared to
controls, among IWA there are more individuals with low goal
activations, high noise, and slow default action times. This
suggests that (i) individual patients show differential amounts
of deficit along the three dimensions of slowed processing, in-
termittent deficient, and resource reduction, (ii) overall, there
is evidence for all three sources of deficit playing a role, and
(iii) IWA have a more variable range of parameter values than
controls. In sum, this study contributes a proof of concept of
a quantitative implementation of, and evidence for, these three
accounts of comprehension deficits in aphasia.
Keywords: Sentence Comprehension; Aphasia; Computa-
tional Modeling; Cue-based Retrieval

Introduction
In healthy adults, sentence comprehension has long been ar-
gued to be influenced by individual differences; a commonly
assumed source is differences in working memory capacity
(Daneman & Carpenter, 1980; Just & Carpenter, 1992). Other
factors such as age (Caplan & Waters, 2005) and cognitive
control (Novick, Trueswell, & Thompson-Schill, 2005) have
also been implicated.

An important question that has not received much attention
in the computational psycholinguistics literature is: what are

sources of individual differences in healthy adults versus im-
paired populations, such as individuals with aphasia (IWA)?
It is well-known that sentence processing performance in
IWA is characterised by a performance deficit that expresses
itself as slower overall processing times, and lower accu-
racy in question-response tasks (see literature review in Patil,
Hanne, Burchert, De Bleser, & Vasishth, 2016). These per-
formance deficits are especially pronounced when IWA have
to engage with sentences that have non-canonical word order
and that are semantically reversible, e.g. Object-Verb-Subject
versus Subject-Verb-Object sentences (Hanne, Sekerina, Va-
sishth, Burchert, & Bleser, 2011).

Regarding the underlying nature of this deficit in IWA,
there is a consensus that some kind of disruption is occur-
ring in the syntactic comprehension system. The exact nature
of this disruption, however, is not clear. Although a broad
range of proposals exist (see Patil et al., 2016), we focus on
three influential proposals here:

1. Intermittent deficiencies: Caplan, Michaud, and Hufford
(2015) suggest that occasional temporal breakdowns of
parsing mechanisms capture the observed behaviour.

2. Resource reduction: A third hypothesis, due to Caplan
(2012), is that the deficit is caused by a reduction in re-
sources related to sentence comprehension.

3. Slowed processing: Burkhardt, Piñango, and Wong (2003)
argue that a slowdown in parsing mechanisms can best ex-
plain the processing deficit.

Computational modelling can help evaluate these different
proposals quantitatively. Specifically, the cue-based retrieval
account of Lewis and Vasishth (2005), which was devel-
oped within the ACT-R framework (Anderson et al., 2004),
is a computationally implemented model of unimpaired sen-
tence comprehension that has been used to model a broad ar-
ray of empirical phenomena in sentence processing relating
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to similarity-based interference effects (Lewis & Vasishth,
2005; Nicenboim & Vasishth, 2017; Vasishth, Bruessow,
Lewis, & Drenhaus, 2008; Engelmann, Jäger, & Vasishth,
2016) and the interaction between oculomotor control and
sentence comprehension (Engelmann, Vasishth, Engbert, &
Kliegl, 2013).1

The Lewis and Vasishth (2005) model is particularly attrac-
tive for studying sentence comprehension because it relies on
the general constraints on cognitive processes that have been
laid out in the ACT-R framework. This makes it possible to
investigate whether sentence processing could be seen as be-
ing subject to the same general cognitive constraints as any
other information processing task, which does not entail that
there are no language specific constraints on sentence com-
prehension. A further advantage of the Lewis and Vasishth
(2005) model in the context of theories of processing deficits
in aphasia is that several of its numerical parameters (which
are part of the general ACT-R framework) can be interpreted
as implementing the three proposals mentioned above.

In Patil et al. (2016), the Lewis and Vasishth (2005) archi-
tecture was used to model aphasic sentence processing on a
small scale, using data from seven patients. They modelled
proportions of fixations in a visual world task, response ac-
curacies and response times for empirical data of a sentence-
picture matching experiment by Hanne et al. (2011). Their
goal was to test two of the three hypotheses of sentence com-
prehension deficits mentioned above, slowed processing and
intermittent deficiency.

In the present work, we provide a proof of concept study
that goes beyond Patil et al. (2016) by evaluating the evi-
dence for the three hypotheses—slowed processing, intermit-
tent deficiencies, and resource reduction—using a larger data-
set from Caplan et al. (2015) with 56 IWA and 46 matched
controls.

Before we describe the modelling carried out in the present
paper and the data used for the evaluation, we first introduce
the cognitive constraints assumed in the Lewis and Vasishth
(2005) model that are relevant for this work, and show how
the theoretical approaches to the aphasic processing deficit
can be implemented using specific model parameters. Having
introduced the essential elements of the model architecture,
we simulate comprehension question-response accuracies for
unimpaired controls and IWA, and then fit the simulated accu-
racy data to published data (Caplan et al., 2015) from controls
and IWA. When fitting individual participants, we vary three
parameters that map to the three theoretical proposals men-
tioned above. The goal was to determine whether the distri-
butions of parameter values furnish any support for any of the
three sources of deficits in processing. We expect that if there
is a tendency in one parameter to show non-default values in
IWA, for example slowed processing, then there is support
for the claim that slowed processing is an underlying source
of processing difficulty in IWA. Similar predictions hold for

1The model can be downloaded in its current form from
https://github.com/felixengelmann/act-r-sentence-parser-em.

the other two constructs, intermittent deficiency and resource
reduction; and for combinations of the three proposals.

Constraints on sentence comprehension in the
Lewis and Vasishth (2005) model

In this section, we describe some of the constraints assumed
in the Lewis and Vasishth (2005) sentence processing model.
Then, we discuss the model parameters that can be mapped to
the three theoretical proposals for the underlying processing
deficit in IWA.

The ACT-R architecture assumes a distinction between
long-term declarative memory and procedural knowledge.
The latter is implemented as a set of rules, consisting of
condition-action pairs known as production rules. These
production rules operate on units of information known as
chunks, which are elements in declarative memory that are
defined in terms of feature-value specifications. For example,
a noun like book could be stored as a feature-value matrix that
states that the part-of-speech is nominal, number is singular,
and animacy status is inanimate: pos nominal

number sing
animate no


Each chunk is associated an activation, a numeric value

that determines the probability and latency of access from
declarative memory. Accessing chunks in declarative mem-
ory happens via a cue-based retrieval mechanism. For exam-
ple, if the noun book is to be retrieved, cues such as {part-of-
speech nominal, number singular, and animate no} could be
used to retrieve it. Production rules are written to trigger such
a retrieval event. Retrieval only succeeds if the activation of
a to-be-retrieved chunk is above a minimum threshold, which
is a parameter in ACT-R.

The activation of a chunk is determined by several con-
straints. Let C be the set of all chunks in declarative memory.
The total activation of a chunk i ∈C equals

Ai = Bi +Si +Pi + ε, (1)

where Bi is the base-level or resting-state activation of the
chunk i; the second summand Si represents the spreading ac-
tivation that a chunk i receives during a particular retrieval
event; the third summand is a penalty for mismatches be-
tween a cue value j and the value in the corresponding slot
of chunk i; and finally, ε is noise that is logistically dis-
tributed, approximating a normal distribution, with location
0 and scale ANS which is related to the variance of the dis-
tribution. It is generated at each new retrieval request. The
retrieval time Ti of a chunk i depends on its activation Ai via
Ti =F exp(−Ai), where F is a scaling constant which we kept
constant at 0.2 here.

The scale parameter ANS of the logistic distribution from
which ε is generated can be interpreted as implementing the
intermittent deficiency hypothesis, because higher values of
ANS will tend to lead to more fluctuations in activation of a
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chunk and therefore higher rates of retrieval failure.2 Increas-
ing ANS leads to a larger influence of the random element
on a chunk’s activation, which represents the core idea of in-
termittent deficiency: that there is not a constantly present
damage to the processing system, but rather that the deficit
occasionally interferes with parsing, leading to more errors.

The second summand in (1), representing the process of
spreading activation within the ACT-R framework, can be
made more explicit for the goal buffer and for retrieval cues
j ∈ {1, . . . ,J} as

Si =
J

∑
j=1

WjS ji. (2)

Here, Wj =
GA
J , where GA is the goal activation parameter

and S ji is a value that increases for each matching retrieval
cue. S ji reflects the association between the content of the
goal buffer and the chunk i. The parameter GA determines
the total amount of activation that can be allocated for all
cues j of the chunk in the goal buffer. It is a free parameter in
ACT-R. This parameter, sometimes labelled the “W param-
eter”, has already been used to model individual differences
in working memory capacity (Daily, Lovett, & Reder, 2001).
Thus, it can be seen as one way (although by no means the
only way) to implement the resource reduction hypothesis.
The lower the GA value, the lower the difference in activa-
tion between the retrieval target and other chunks. This leads
to more retrieval failures and lower differences in retrieval la-
tency on average.

Finally, the hypothesis of slowed processing can be
mapped to the default action time DAT in ACT-R. This de-
fines the constant amount of time it takes a selected produc-
tion rule to “fire”, i.e. to start the actions specified in the ac-
tion part of the rule. Higher values would lead to a higher
delay in firing of production rules. Due to the longer decay in
this case, retrieval may be slower and more retrieval failures
may occur.

Next, we evaluate whether there is evidence consistent
with the claims regarding slowed processing, intermittent de-
ficiency, and resource reduction, when implemented using the
parameters described above.

Simulations
In this section we describe our modelling method and the pro-
cedure we use for fitting the model results to the empirical
data from Caplan et al. (2015).

Materials
We used the data from 56 IWA and 46 matched controls pub-
lished in Caplan et al. (2015). In this data-set, participants
listened to recordings of sentences presented word-by-word;

2As an aside, note that Patil et al. (2016) implemented intermit-
tent deficiency using another source of noise in the model (utility
noise). In future work, we will compare the relative change in qual-
ity of fit when intermittent deficiency is implemented in this way.

they paced themselves through the sentence, providing self-
paced listening data. Participants processed 20 examples of
11 spoken sentence types and indicated which of two pictures
corresponded to the meaning of each sentence. This yielded
accuracy data for each sentence type.

We chose two of the 11 sentence types for the current sim-
ulation: simple subject relatives (The woman who hugged the
girl washed the boy) vs. object relatives (The woman who
the girl hugged washed the boy), and subject relatives with
a reflexive (The woman who hugged the girl washed herself )
vs. object relatives with a reflexive (The woman who the girl
hugged washed herself ). We chose relative clauses for two
reasons. First, relative clauses have been very well-studied in
psycholinguistics and serve as a typical example where pro-
cessing difficulty is (arguably) experienced due to deviations
in canonical word ordering (Just & Carpenter, 1992). Second,
the Lewis and Vasishth model already has productions de-
fined for these constructions, so the relative clause data serve
as a good test of the model as it currently stands. The re-
flexive in the second sentence type adds an additional layer
of complexity to the sentences. In the model, this is reflected
by an additional retrieval process on the reflexive, where the
antecedent is retrieved.

The Caplan et al. (2015) dataset only provides accuracy
data for the dependency between the embedded verb and its
subject. We will address this problem in future studies where
new data will be collected.

Lastly, since the production rules in the model were de-
signed for modelling unimpaired processing, using them for
IWA amounts to assuming that there is no damage to the pars-
ing system per se, but rather that the processing problems in
IWA are due to some subset of the cognitive constraints dis-
cussed earlier. This also implies that the IWA’s parsing sys-
tem is not engaged in heuristic processing, as has sometimes
been claimed in the literature; see ? (?) for discussion on that
point.

Method
For the simulations, we refer to as the parameter space Π the
set of all vectors (GA,DAT,ANS) with GA, DAT, ANS∈R.
For computational convenience, we chose a discretisation of
Π by defining a step-width and lower and upper boundaries
for each parameter. In this discretised space Π′, we chose
GA ∈ {0.2,0.3, . . . ,1.1}, DAT ∈ {0.05,0.06, . . . ,0.1}, and
ANS ∈ {0.15,0.2, . . . ,0.45}.3 Π′ could be visualised as a
three-dimensional grid of 420 dots, which are the elements
p′ ∈Π′.

The default parameter values were included in Π′. This
means that models that vary only one or two of the three pa-
rameters were included in the simulations. This is motivated
by the results of Patil et al. (2016): there, the combined model
varying both parameters (default action time (DAT) and util-
ity noise) achieved the best fit to the data. Including all mod-

3The standard settings in the Lewis and Vasishth (2005) model
are GA = 1, DAT = 0.05 (or 50 ms), and ANS = 0.15.
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GA DAT ANS GA & DAT GA & ANS DAT & ANS GA & DAT & ANS
SR control 19 24 18 18 11 16 10

IWA 38 41 42 32 33 36 27
OR control 21 26 36 21 20 25 20

IWA 40 48 53 38 40 48 38

Table 1: Number of participants in simple subject / object relatives for which non-default parameter values were predicted,
in the subject vs. object relative tasks, respectively; for goal activation (GA), default action time (DAT) and noise (ANS)
parameters.

GA DAT ANS GA & DAT GA & ANS DAT & ANS GA & DAT & ANS
SR control 17 36 23 11 11 5 5

IWA 40 46 42 36 35 31 31
OR control 28 26 37 27 19 27 18

IWA 51 48 51 44 46 41 39

Table 2: Number of participants in subject / object relatives with reflexives for which non-default parameter values were
predicted, in the subject vs. object relative tasks, respectively; for goal activation (GA), default action time (DAT) and noise
(ANS) parameters.

els allows us to do a similar investigation.
For all participants in the Caplan et al. (2015) data-set, we

calculated comprehension question response accuracies, av-
eraged over all items of the subject / object relative clause
and subject / object relative clause with reflexive conditions.
For each p′ ∈Π′, we ran the model for 1000 iterations for the
subject and object relative tasks. From the model output, we
determined whether the model made the correct attachment
in each iteration, i.e. whether the correct noun was selected
as subject of the embedded verb, and we calculated the ac-
curacy in a simulation for a given parameter p′ ∈ Π′ as the
proportion of iterations where the model made the correct at-
tachment. We counted a parsing failures, where the model did
not create the target dependency, as an incorrect response.

The problem of finding the best fit for each subject can be
phrased as follows: for all subjects, find the parameter vector
that minimises the absolute distance between the model ac-
curacy for that parameter vector and each subject’s accuracy.
Because there might not always be a unique p′ that solves this
problem, the solution can be a set of parameter vectors. If for
any one participant multiple optimal parameters were calcu-
lated, we averaged each parameter value to obtain a unique
parameter vector. This transforms the parameter estimates
from the discretised space Π′ to the original parameter space
Π.

Results
In this section we presents the results of the simulations and
the fit to the data. First, we describe the general pattern of
results reflected by the distribution of non-default parameter
estimates per subject. Following that, we test whether tighter
clustering occurs in controls.

Distribution of normal parameter values Tables 1 and 2
show the number of participants for which a non-default pa-

rameter value was predicted. By default values we mean the
values GA = 1, DAT = 0.05 (or 50 ms), and ANS = 0.15. It
is clear that, as expected, the number of subjects with non-
default parameter values is always larger for IWA vs. con-
trols, but controls show non-default values unexpectedly of-
ten. In controls, the main difference between subject and ob-
ject relatives is a clear increase in elevated noise values in
object relatives for both simple subject / object relatives and
those with reflexives. Perhaps surprisingly, in the reflexives
condition (cf. Table 2), controls display higher DAT in subject
vs. object relatives.

For IWA in simple subject relatives, the single-parameter
models are very similar, whereas in simple object relatives,
most IWA (95%) exhibit elevated noise values, while a far
smaller proportion (71%) showed reduced goal activation val-
ues. In the relatives with reflexives, IWA show the same pat-
tern in subject and object relatives, with a high degree of non-
default parameter estimates for each of the three parameters.

Overall, most IWA exhibit non-default parameter settings
ANS and DAT. While in subject / object relatives with reflex-
ives, a similar number of IWA shows elevated GA settings,
we think this might be due to the similar model behaviours
that non-default GA and ANS elicit. We address this point in
the discussion below.

Cluster analysis In order to investigate the predicted clus-
tering of parameter estimates, we performed a cluster anal-
ysis on the data too see to which degree controls and IWA
could be discriminated. If our prediction is correct that, com-
pared to IWA, clustering is tighter in controls, we expect that
a higher proportion of the data should be correctly assigned to
one of two clusters, one corresponding to controls, the other
one corresponding to IWA. We chose hierarchical clustering
to test this prediction.

We combined the data for subject and object relatives into
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Subject relatives Object relatives
predicted group controls IWA controls IWA

control 34 21 42 24
IWA 12 35 4 32

accuracy 74% 63% 91% 57%

Table 3: Discrimination ability of hierarchical clustering
on the combined data for simple subject / object relative
clauses. Numbers in bold show the number of correctly clus-
tered data points. The bottom row shows the percentage ac-
curacy.

Subject relatives Object relatives
predicted group controls IWA controls IWA

control 31 17 27 45
IWA 15 39 19 11

accuracy 67% 70% 59% 20%

Table 4: Discrimination ability of hierarchical clustering on
the combined data for subject / object relative clauses with
reflexives. The numbers in bold are the correct classifications
of controls/IWA. The bottom row shows the percentage accu-
racy.

one respective data set, one for simple relatives, and one for
relatives with reflexives. We calculated the dendrogram and
cut the tree at 2, because we are only looking for the dis-
crimination between controls and IWA. The results of this are
shown in Table 3 and 4. In simple relatives (cf. Table 3), the
clustering is able to identify controls better than IWA, but the
identification of IWA is better than chance (50%). In rela-
tives with reflexives (cf. Table 4), clustering shows moderate
but above chance discrimination ability in subject relatives.
In object relatives with reflexives, controls are discriminated
barely above chance, while there is an above chance propor-
tion of misclassifications in IWA, demonstrating poor perfor-
mance of the clustering there. Discriminative ability might
improve if all 11 constructions in Caplan et al. (2015) were to
be used; this will be investigated in future work.

Discussion
The simulations and cluster analysis above demonstrate over-
all tighter clustering in parameter estimates for controls, and
more variance in IWA. This is evident from the clustering re-
sults in Tables 3 and 4. These findings are consistent with
the predictions of the small-scale study in Patil et al. (2016).
However, there is considerable variability even in the param-
eter estimates for controls, more than expected based on the
results of Patil et al. (2016).

The distribution of non-default parameter estimates (cf. Ta-
bles 1 and 2) suggest that all three hypotheses are possible
explanations for the patterns in our simulation results: com-
pared to controls, estimates for IWA tend to include higher
default action times and activation noise scales, and lower
goal activation. These effects generally appear to be more

pronounced in object relatives vs. subject relatives. This
means that all the three hypotheses can be considered viable
candidate explanations. Overall, more IWA than controls dis-
play non-default parameter settings. Although there is evi-
dence that many IWA are affected by all three impairments
in our implementation, there are also many patients that show
only one or two non-default parameter values. Again, this is
more the case in object relatives than in subject relatives.

In general, there is evidence that all three deficits are plau-
sible to some degree. However, IWA differ in the degree of
the deficits, and they have a broader range of parameter values
than controls. Nevertheless, even the controls show a broad
range of differences in parameter values, and even though
these are not as variable as IWA, this suggests that some of
the unimpaired controls can be seen as showing slowed pro-
cessing, intermittent deficiencies, and resource reduction to
some degree.

There are several problems with the current modelling
method. First, using the ACT-R framework with its multiple
free parameters has the risk of overfitting. We plan to ad-
dress this problem in three ways in future research. (1) Test-
ing more constructions from the Caplan et al. (2015) data-
set might show whether the current estimates are unique to
this kind of construction, or if they are generalisable. (2) We
plan to create a new data-set analogous to Caplan’s, using
German as the test language. Once the English data-set has
been analysed and the conclusions about the different candi-
date hypotheses have been tested on English, a crucial test of
the conclusions will be cross-linguistic generalisability. (3)
We plan to investigate whether an approach as in Nicenboim
and Vasishth (2017), using lognormal race models and mix-
ture models, can be applied to our research question.

Second, the use of accuracies as modelling measure has
some drawbacks. Informally, in an accuracy value there is
less information encoded than in, for example, reading or lis-
tening times. In future work, we will implement an approach
modelling both accuracies and listening times. Also, counting
each parsing failure as ‘wrong’ might yield overly conserva-
tive accuracy values for the model; this will be addressed by
assigning a random component into the calculation. This re-
flects more closely a participant who guesses if he/she did not
fully comprehend the sentence.

Lastly, simulating the subject vs. object relative tasks sep-
arately yields the undesirable interpretation of participants’
parameters varying across sentence types. While this is not
totally implausible, estimating only one set of parameters for
all sentence types would reduce the necessity of making addi-
tional theoretical assumptions on the underlying mechanisms,
and allows for easier comparisons between different syntactic
constructions. We plan to do this in future work.

Although our method, as a proof of concept, showed that
all three hypotheses are supported to some degree, it is worth
investigating more thoroughly how different ACT-R mecha-
nisms are influenced by changes in the three varied parame-
ters in the present work. Implementing more of the construc-
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tions from Caplan et al. (2015) will, for example, enable us to
explore how the different hypotheses interact with each other
in our implementation. More specifically, the decision to use
the ANS parameter makes the assumption that the high noise
levels for IWA influence all declarative memory retrieval pro-
cesses, and thus the whole memory, not only the production
system. Also, as both the GA and ANS parameters lead to
higher failure rates, it will be worth investigating in future
work whether a more focussed source of noise, such as utility
noise, may be a better way to model intermittent deficiencies.

One possible way to delve deeper into identifying the
sources of individual variability in IWA could be to inves-
tigate whether sub-clusters show up within the IWA param-
eter estimates. For example, different IWA being grouped
together by high noise values could be interpreted as these
patients sharing a common source of their sentence process-
ing deficit (in this hypothetical case, our implementation of
intermittent deficiencies). We will address this question once
we have simulated data for more constructions of the Caplan
et al. (2015) data-set.
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Abstract 

The Lucia comprehension system attempts to model human 
comprehension by using the Soar cognitive architecture, 
Embodied Construction Grammar (ECG), and an incremental, 
word-by-word approach to grounded processing. Traditional 
approaches use techniques such as parallel paths and global 
optimization to resolve ambiguities. Here we describe how 
Lucia deals with lexical, grammatical, structural, and semantic 
ambiguities by using knowledge from the surrounding 
linguistic and environmental context. It uses a local repair 
mechanism to maintain a single path, and shows a garden path 
effect when local repair breaks down. Data on adding new 
linguistic knowledge shows that the ECG grammar grows 
faster than the knowledge for handling context, and that low-
level grammar items grow faster than more general ones. 

Keywords: Natural language understanding; cognitive 
models; Soar; construction grammar; Embodied Construction 
Grammar; local repair; ambiguity resolution; garden path 
effect. 

Introduction 
In previous work, we described the development of a 
cognitive model of language comprehension (Lindes and 
Laird, 2016; 2017), implemented in Soar (Laird, 2012), that 
incorporates the Embodied Construction Grammar (ECG) 
cognitive linguistic theory of grammar (Feldman, Dodge, and 
Bryant, 2009; Bergen and Chang, 2013). A key part of our 
model is that it attempts to model human comprehension 
processes. This is done by using parsing that is incremental 
and word by word, eagerly applying all available knowledge 
sources at each step, while maintaining a single syntactic and 
semantic interpretation. Our work is inspired by previous 
cognitive model-based theories, such as NL-Soar (Newell, 
1990; Lehman et al. 1991; Lewis, 1993), and is consistent 
with the recent “Now–or-Never bottleneck” proposal of 
Christiansen and Chater (2016).  

Traditional natural language processing approaches focus 
on syntactic analysis of isolated sentences (Hale, 2014). 
Techniques for resolving ambiguities include multiple 
parallel paths, using statistics from corpora, global 
optimization, and producing a ranked list of possible parses. 
These methods lack contextual knowledge to resolve 
ambiguities to produce accurate, grounded meanings in 
context. Their success is at the cost of relaxing constraints 
imposed by an incremental model of human processing. 

 Although our system, called Lucia, has been successful in 
supporting language understanding for an embodied robotic 
agent (Lindes and Laird, 2016), a significant question is 
whether incremental, word-by-word approaches can handle 
the many types of ambiguity that can arise in language 

understanding. Parsers developed for ECG (Bryant, 2008) 
and Fluid Construction Grammar (FCG; Steels and Hild, 
2012) do not attempt to model incremental parsing, but 
instead treat parsing as optimization over a complete 
sentence, with no commitment to word-by-word processing. 
Thus, these other approaches do not treat the issues of dealing 
with ambiguity that arise in incremental parsing.  

In this paper, we explore the problem of ambiguity in 
incremental language processing. We build on previous work 
by Lewis (1993), where local repair is used to recover from 
some types of syntactic ambiguity, but we extend this to other 
forms of lexical, grammatical, structural, and semantic 
ambiguity, taking advantage of the contextual knowledge that 
is available during processing. Comparison to detailed human 
performance data is outside the scope of our current research. 
In the following, we discuss the basic operation of the system, 
and explore how it deals with different ambiguous situations. 

Basic Comprehension 
Lucia is built within a Soar agent called Rosie (Mininger and 
Laird, 2016) that learns new tasks involving robotic object 
manipulation and navigation. It uses a grammar for a domain-
specific subset of English written in the formal language of 
ECG (Bryant, 2008). A program translates the ECG grammar 
into Soar production rules that we call G rules. Another set of 
Soar rules that connect to the embodied context of the agent, 
are written by hand, and are called C rules. Together these 
rules process language input to produce meaningful messages 
that Rosie uses to perform actions and learn new tasks. 

Grammars in the ECG language are made up of two kinds 
of “items:” constructions and schemas. Each schema defines 
the structure of a certain kind of meaning element and defines 
its “roles” or “slots.” A construction is a pairing of a form 
with a meaning. There are three types of ECG constructions. 
Lexical constructions (L cxns) recognize input words. 
Phrasal constructions (P cxns) combine one or more 
constituents already recognized into a higher-level structure. 
General constructions (G cxns) do not recognize specific 
forms, but augment instances of other constructions that are 
marked as their subcases. Any construction can evoke a 
schema to represent its meaning and provide constraints to 
specify how to populate the slots of the schema. 

Semantic parsing is carried out incrementally, with 
processing done greedily for each word, as in the incremental 
approach called “Chunk-and-Pass,” which Christiansen and 
Chater (2016) claim models human comprehension. The 
basic operation is a word cycle in which a new word is 
received, a lexical access operator retrieves one or more 
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senses of that word (L cxns), and then further processing is 
performed. The further processing includes operators that 
recognize and apply phrase level constructions (P cxns) and 
operators that ground the meanings built from the grammar 
to the perceptions and actions of the agent using C rules. 

The current state of the parse is represented by a stack in 
working memory that contains a sequence of construction 
instances that have been recognized but not yet incorporated 
as constituents of a higher level construction. During lexical 
access, one or more L cxn instances are added to the current 
state. Then a P cxn that matches the current state, if any, 
creates a new instance of itself on the stack, removing its 
constituents from the stack and adding them as its children, 
to form a new “chunk.” This can happen several times in a 
single word cycle. When a construction instance is created, 
its corresponding meaning structure is also built. These 
meaning structures trigger grounding operators that look for 
something to ground this meaning, either in the agent’s 
perceptual model or its general background knowledge. 

 
 (a) 

 
Pick up the green sphere.

*

*

*

 
(b) 

 
Put it on the stove.

*

* *

 
Figure 1: Examples of word-by-word comprehension. 

 
Figure 1 shows some example parses. The word processing 

cycles are separated by vertical dotted lines. Each rectangle 
is a construction instance, with L cxns shown larger. An 
asterisk means a grounding operator was used. Meaning 
structures are not shown. Within each cycle, operators are 
executed from the bottom up. When the whole sentence has 
been processed and the result is a single construction 
instance, that construction is interpreted to produce a message 
to tell the robot what to do. If the processing does not produce 
a single result, the parse fails. 

The Lucia comprehender has been applied to a corpus of 
several hundred sentences previously used with the Rosie 
system. The grammar and context rules have been developed 
sufficiently to correctly comprehend 130 of those sentences. 
A variety of sentential forms are comprehended, including 
the examples in (1). 
 

(1) a. The sphere is green. 
 b. Store the large green sphere on 

the red triangle. 

 c. Pick a green block that is 
larger than the green box. 

 d. Drive to the wall. 
 e. Go until there is a doorway. 
 f. If the green box is large then 

go forward. 
 g. What is inside the pantry? 
 h. Where is the red triangle? 
 i. Is the large triangle to the 

right of the green sphere? 
 j. Drive down the hall until you 

reach the end. 
 k. Fetch a soda.  
 
A variety of declarative, interrogative, and imperative 

sentences are handled, including ones with relative clauses 
and conditional clauses. In many of the 130 sentences, 
various kinds of lexical, syntactic, and semantic ambiguities 
must be handled. Below we examine some of these cases. 

Handling Ambiguities 
Here we analyze how Lucia handles instances of lexical, 
grammatical, structural, and semantic ambiguities, as well as 
garden path sentences. For each type of ambiguity, we give 
some specific examples and show how Lucia resolves them 
using different types of contextual knowledge within its 
incremental, word-by-word approach to comprehension. 

Lexical Ambiguities 
Lucia has several strategies for dealing with words that have 
different meanings depending on the context. 

 
Resolution by Syntactic Context Many function words have 
meanings that vary depending on the syntactic context. For 
example, up can be a particle together with a verb as in pick 
up, or it can be a preposition. Various forms of to be, such as 
is, have many possible uses. When possible, Lucia uses the 
strategy of having a single construction for the word defined 
in the grammar and instantiated during lexical access, and 
then resolving the correct meaning from the syntactic context 
by what phrasal construction uses that word. This follows the 
principle in construction grammar theory that both words and 
larger constructions contribute to meaning (Goldberg, 1995). 
Consider some of the many uses of is in (2): 
 

(2) a. The sphere is green. 
 b. The red triangle is on the 

stove. 
 c. Go until there is a doorway. 
 d. Is the large orange block a 

sphere? 
 
Is can declare an object property (2a) or a relation (2b). 

With there, is can declare the existence of something (2c). Is 
can also introduce a question (2d). None of this information 
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is derived during lexical access, but is added as phrasal 
constructions are recognized. 
 
Multiple Senses, Immediate Resolution Content words 
often have multiple senses, with context needed to select 
from them. In these cases, the grammar defines two or more 
alternative lexical constructions. A phrasal construction that 
recognizes one of them chooses that one and deletes the 
others, as in (3): 
 

(3) a. The sphere is red. 
 b. Where is the red triangle? 
 c. Is this a sphere? 
 
These three sentences show different senses for both 

sphere and red. Sphere produces two senses, a noun and a 
class name. The noun sense is recognized by one P cxn in 
(3a), while a sphere in (3c) is recognized by a different P cxn 
that uses the class sense, discarding the noun. In both (3a) and 
(3b) red is recognized as a property, but in (3a) it is declared 
to apply to the sphere, while in (3b) it is used as an adjective 
to modify triangle. 

That can be deictic (4a) to refer to something being pointed 
to, or can be used to introduce a relative clause (4b). Both 
senses are generated in lexical access. A P cxn that matches 
the context then selects one of the senses and deletes the 
other. 
 

(4) a. Put that in the pantry. 
 b. Pick up the green block that is 

on the stove. 
 
Multiple Senses, Delayed Resolution The word square can 
be a property to be applied, a noun, or an adjective: 
 

(5) a. This is a square. 
 b. Put the square in the square 

box. 
 
All three senses are generated by lexical access each time. 

For a property application as in (5a), that sense is chosen by 
a P cxn and the others discarded. In the first case in (5b), the 
noun is chosen similarly. 

The second case in (5b) is more complicated: in processing 
this instance of square, the noun will be chosen as before. 
When box is being processed, the system recognizes that the 
chosen sense is wrong, and an operator called snip is selected, 
which deletes the P cxn for the square. Next, the previously 
discarded adjective sense of square replaces the noun sense. 
Now the whole phrase the square box can be recognized. 
Many nouns can be used as adjectives like this. 

The case of square as an adjective illustrates the delayed 
resolution strategy. In immediate resolution, other senses are 
not completely forgotten; they are linked to the chosen sense 
and can be brought back and selected in a later context. This 
is one kind of repair process that makes incremental parsing 

possible. These strategies make it possible for the 
comprehender to maintain only a single path in its parse state, 
yet still have enough information available to make a local 
repair when necessary. 

 
Resolution by Semantic Context Some lexical ambiguities 
must be resolved by semantic rather than syntactic context. 
The meaning of bank, for example, depends on whether the 
semantic context is related to rivers or finances. Lucia has 
access to semantic information, both in the part of the 
sentence that has already been processed and in the more 
general discourse context. At the moment, none of the 
sentences we have worked with have needed this kind of 
resolution, but this can be easily added when needed. 

Grammatical Ambiguities 
Lucia uses one of two strategies when multiple phrasal 
constructions match a given parse state. The first is simple: 
when two different constructions match at the same time, if 
one matches more constituents than the other, then the more 
specific one (the one with the greater span) is chosen. When 
processing sphere in Figure 1a, either the noun by itself could 
be recognized or the phrase the green sphere. The longer, 
more specific match is preferred to the shorter, more general 
one. 

There are cases where two constructions with the same 
span match the same parse state. In order to choose a more 
specific option over a more general one in these cases, there 
are preference rules to select the more specific one. 
 

(6) a. The sphere is green. 
 b. This is a sphere.  
 
In (6) we have two phrases with sphere. Either could be 

recognized by a noun phrase construction, but in (6b) the 
phrase should be interpreted as a property that can be applied 
to the subject of the sentence rather than a noun phrase to 
ground to an object. Two preference rules, one for a definite 
and one for an indefinite determiner, make the distinction. 

Structural Ambiguities 
Often the immediate context suggests one way of integrating 
a word into the ongoing parse, but later on that decision turns 
out to be wrong, as in the square box where the word square 
should be an adjective and not a noun. Of particular 
importance are the attachment of prepositional phrases and 
relative or subordinate clauses. Lucia implements a strategy 
of local repair, similar to that used by Lewis (1993), to 
resolve these ambiguities, as the following examples show. 
 

(7) a. Pick up the green block on the 
stove. 

 b. Put the green sphere in the 
pantry. 

 c. Pick up the green block that is 
on the stove. 
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 d. Put the green block that is on 
the stove in the pantry. 

 e. Move the green rectangle to the 
left of the large green 
rectangle to the pantry. 

 
Sentence (7a) appears to be complete after processing 

block. However, there are more words. After processing 
stove, there is a prepositional phrase that could either modify 
the green block or provide a target location for the verb. In 
this case, it should modify the noun phrase, since pick up does 
not expect a target location. However, that noun phrase has 
already been consumed by the clause construction and is no 
longer available on the stack as a constituent, so the system 
is at an impasse. What can be done? 

The answer is a variant of the snip operator described 
earlier, which was introduced by Lewis (1993). This version 
deletes the clause construction to expose the noun phrase for 
the green block on the stack. Then that noun phrase is 
combined with the prepositional phrase to form a new 
referring expression that is grounded to that particular green 
block, which happens to be on the stove. Figure 2 shows two 
steps of this process.  

 
(a) 
 

Pick up the green block

*

*

*

on the stove.

*

SNIPPED

 
(b) 
 

Pick up the green block

*

*

*

*

on the stove.

*

BUILT 
AFTER 
SNIP

 
Figure 2: A local repair using snip 

 
Figure 2a shows the state of the parse when we reach the 

impasse. At this point, a snip is performed to delete the clause 
construction shown with dotted lines, allowing the creation 
and grounding of the expression for the green block on the 
stove, as in Figure 2b. Finally, a new clause construction is 
created with this new referring expression. 

Another aspect of grounded comprehension is shown by 
(7a). The green block is first grounded to a set of four green 

                                                           
1 Linguists use the term infelicitous to describe a sentence which is 
syntactically correct but does not make sense semantically. 

blocks that all exist in the current environment. If the 
sentence ended here, the comprehender would have two 
choices: either pick one of the four at random or report that it 
sees four possible meanings and ask for clarification. 
However, when the full expression the green block on the 
stove has been processed, grounding yields a single green 
block, which is currently on the stove. This shows an example 
of resolving ambiguous semantics through grounding. 

Semantic Ambiguities 
The current Lucia system resolves several problems using 
semantic information built into its grammar. One example is 
the different prepositional phrase attachments chosen for 
sentences (7a) and (7b). The two verbs pick up and put are 
not simply processed as instances of some general verb part 
of speech. Instead, distinct meaningful constructions for the 
two verbs are treated differently in the grammar, causing one 
to require a prepositional phrase and the other not. This is an 
example of how grammatical constructions, not just lexical 
items, carry meaning, as Goldberg (1995) insists. 

Prepositions give another interesting example of this effect. 
Consider the two sentences in (8). 
 

(8) a. Go to the kitchen. 
 b. Go down the hall. 
 
Most generative grammar approaches produce the same 

exact grammatical structure for both of these sentences. Such 
an approach fails in an incremental semantic parse that must 
produce actionable meanings. The final messages that are to 
be sent to the robot for these two sentences are different. For 
(8a), the message specifies a specific waypoint as the goal of 
the go action, whereas for (8b) no specific goal is given, just 
an object representing the hall to guide the motion. 

When sentence (8b) was first encountered while building 
Lucia’s grammar, we realized that not all prepositions are the 
same. Consider a number of other possible prepositions that 
could have appeared in one of these sentences: across, along, 
around, behind, in, into, out of, past, through, to the left of, 
and so on. Some of these would work perfectly well in one of 
the sentences while making the other infelicitous1. Whether 
some of these make sense in certain sentences may depend 
on the noun that follows or the main verb of the sentence. 
Each of these prepositions seem to describe a trajectory in 
space, which may or may not have a terminating point. An 
interesting mental exercise is to try to imagine a diagram of 
the trajectory expected for each of the prepositions listed in 
each of the given sentences or in a similar one. 

To deal with this problem, some refactoring was done in 
the part of the grammar dealing with prepositions. In (8a), to 
is treated as an ordinary preposition. For down in (8b) we 
created a new construction that can only be a constituent of a 
corresponding special subcase of a prepositional phrase. 
These constructions provide an alternative way of parsing 
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depending on the particular preposition involved, which then 
allows building a different meaning structure. 

This is another example of constructions carrying meaning, 
and shows key characteristics of a constructionist approach 
to grammar. In this approach we seek to define many specific 
constructions to build meaning into the grammar, rather than 
a minimal number of meaningless phrase labels to cover the 
language. This fits with psychological theories of children’s 
language acquisition that emphasize children learning very 
specific constructions first and then gradually generalizing 
them (Tomasello, 2003). 

Garden Path Sentences 
“Garden path sentences” are grammatically correct, but are 
difficult for humans to parse correctly, at least at first. It 
appears that humans make a wrong decision early on in the 
parse, and later on, no local repair mechanism is sufficient to 
correct the problem. The Lucia theory produces this effect as 
we see with (9). 
 

(9) The horse raced past the barn 
fell. 

 
Lewis (1993) provides a theory of garden paths. He 

describes three possible causes: there is a lack of structural 
cues to trigger repair, the syntactic relation that needs to be 
altered is no longer available, or the system has not learned 
an alternative solution through previous deliberation. 

The Lucia analysis of this sentence is consistent with this 
theory, as shown in Figure 3. First, the horse raced looks like 
a whole sentence using the past tense of race and discarding 
its past participle sense. Later a correct parse is found for The 
horse raced past the barn. Now when fell arrives, there is no 
way to integrate it into the sentence, because of the wrong 
choice that was made to use raced as a simple past tense verb 
rather than a past participle. This creates a garden path effect. 

 

The horse raced past the

*

barn fell.

?

*

 
Figure 3: A garden path sentence. 

 
Why does local repair not work here?  Because when the 

system gets to the impasse, the change that needs to be made 
is at raced, which is two layers back on the stack and two 
layers deep in the hierarchy. This is not local enough for local 
repair to work, consistent with Lewis’s second reason. 

If the grammar only has the past participle sense of raced, 
Lucia produces a correct analysis. A deliberative repair 
process might produce the correct parse. Neither humans nor 
Lucia can do this as part of automatic parsing. 

Taken together, the examples above show that an 
incremental comprehension system can resolve many lexical, 
grammatical, structural, and semantic ambiguities, and at the 
same time produce garden path effects. 

Adding to Linguistic Knowledge 
Currently, Lucia has no mechanism for learning new 
vocabulary, new phrasal constructions, or new concepts. The 
principle that meaningful language relies on many very 
specific constructions organized in a network with some 
generalities (Goldberg, 2006), rather than a few general rules, 
suggests that adding linguistic knowledge by hand will not 
scale up to something approaching general human language. 
Thus, even if our comprehension mechanisms are sufficient, 
the system will be limited in its application if it is unable to 
acquire new language. A means of acquisition is an essential 
goal for future work. 

However, by analyzing Lucia’s development, we can make 
some predictions about learning. In Lucia, the linguistic 
knowledge has grown incrementally. To process each new 
sentence, we coded new constructions and schemas in ECG 
and added new context rules when necessary. We expect that 
the G rules, which encode items in the grammar, would grow 
faster than the C rules which perform contextual processing. 

Figure 4 shows how the number of Soar production rules 
of each type grew as the number of sentences comprehended 
grew from 42 to 130. Many more grammar rules than context 
rules were added, and the number of grammar rules grew 
more rapidly than the number of context rules. 

 

 
Figure 4: Growth of C & G rules as language coverage 

increases. 
 

Figure 5 gives a different perspective on this growth data. 
Here we show the growth in ECG items, both constructions 
and schemas. Constructions are further broken down into 
lexical constructions (L cxns), phrasal constructions (P cxns), 
and general constructions (G cxns). We see that lexical 
constructions and schemas are growing faster than the more 
general construction types, confirming that the more specific 
items grow faster. 
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Figure 5: Growth of ECG items as language grows. 

Conclusions 
The results from Lucia are consistent with the claim that a 
comprehension system using a human-like, integrated, 
incremental parsing approach, within a cognitive 
architecture, and with construction grammar, can 
incrementally resolve a variety of linguistic ambiguities. 
They also are consistent with one type of breakdown that 
arises in garden path sentences in a way similar to humans. 

How scalable is this approach? There are many linguistic 
forms that it does not handle: past and future tenses, auxiliary 
verbs, conjunctions, metaphor, and on and on. Nevertheless, 
as Figures 4 and 5 show, as new forms have been addressed, 
most of the new knowledge required has been expressible in 
the ECG grammar and has not required changes to the 
underlying context rules 

The techniques we have described for handling ambiguity, 
however, depend mostly on the context operators. They 
provide grounded semantics, select among grammatical 
alternatives, and perform local repairs. This is consistent with 
the theory that human-like comprehension relies heavily on 
context to resolve ambiguities. 

The current approach requires coding context rules by 
hand. In the future, we will attempt to enhance the ECG 
language to encode contextual constraints and/or use context-
dependent retrievals with spreading activation in long-term 
declarative memory (Jones et al., 2016). 

Also in future work we intend to explore comparing 
detailed processing data from Lucia to the large amount of 
available human performance data, and to datasets other than 
the Rosie sentence corpus we have considered here. 
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Abstract

The ungrammatical sentence The key to the cabinets are on the
table is known to lead to an illusion of grammaticality. As dis-
cussed in the meta-analysis by Jäger et al., 2017, faster reading
times are observed at the verb are in the agreement-attraction
sentence above compared to the equally ungrammatical sen-
tence The key to the cabinet are on the table. One explanation
for this facilitation effect is the feature percolation account: the
plural feature on cabinets percolates up to the head noun key,
leading to the illusion. An alternative account is in terms of
cue-based retrieval account (Lewis & Vasishth, 2005), which
assumes that the non-subject noun cabinets is misretrieved due
to a partial feature-match when a dependency completion pro-
cess at the auxiliary initiates a memory access for a subject
with plural marking. We present evidence for yet another ex-
planation for the observed facilitation. Because the second
sentence has two nouns with identical number, it is possible
that these are, in some proportion of trials, more difficult to
keep distinct, leading to slower reading times at the verb in the
first sentence above; this is the feature overwriting account of
Nairne, 1990. We show that the feature overwriting proposal
can be implemented as a finite mixture process. We reanalysed
ten published data-sets, fitting hierarchical Bayesian mixture
models to these data assuming a two-mixture distribution. We
show that in nine out of the ten studies, a mixture distribu-
tion corresponding to feature overwriting furnishes a superior
fit over both the feature percolation and the cue-based retrieval
accounts.
Keywords: Feature overwriting; feature percolation; cue-
based retrieval; sentence processing; interference; reading;
Bayesian hierarchical mixture models

Introduction
It is well-known that sentences such as (1a) can lead to an
illusion of grammaticality. The sentence is ungrammatical
because of the lack of number agreement between the subject
key and the auxiliary are. Note that the second noun, cabi-
nets, and the auxiliary are agree in number, but no syntactic
agreement is possible between these two elements.

(1) a. The key to the cabinets are on the table.

b. The key to the cabinet are on the table.

Many sentence comprehension studies have shown that the
illusion has the effect that the auxiliary are is read faster in
(1a) compared to the equally ungrammatical sentence (1b)
(see Jäger, Engelmann, & Vasishth, 2017 for a review). In
contrast to (1a), in (1b) the second noun (cabinet) is singular
and does not agree with the auxilary in number.

Several explanations have been proposed for the illusion
of grammaticality in (1a) vs. (1b). We discuss two of these
here. The feature percolation account proposes that in (1a)
the plural feature on cabinets can, in some proportion of tri-
als, move or percolate up to the head noun key (see Patson
& Husband, 2016 for recent evidence for this model). The
head noun now has the plural feature, leading to an illusion
of grammaticality compared to (1b), where no such feature
percolation occurs. Another prominent explanation, due to
Wagers, Lau, and Phillips (2009), is the retrieval interference
account. Here, in ungrammatical sentences like (1a), a sin-
gular verb would be predicted; but when the plural verb are
is encountered, a cue-based retrieval process (Lewis & Va-
sishth, 2005) is triggered: The verb triggers an access (called
a retrieval) for a noun that is plural marked and is a subject. A
parallel cue-based associative memory access leads to the re-
trieval of a partially matching noun in memory (cabinets) that
agrees in number but is not the subject. This partial match
leads to a successful retrieval and an illusion of grammatical-
ity.1

As we show next, there is evidence for both these accounts:
a facilitatory effect is generally present in the published data.

The facilitatory effect in reading time in the
“illusion of grammaticality” data-sets
We first establish that a facilitatory effect is found in studies
comparing sentences like (1a) and (1b). In connection with
the meta-analysis relating to studies on cue-based retrieval
reported in Jäger et al. (2017), we had obtained the raw data
from 10 studies on sentences like (1a) and (1b). These were
reading-time studies reported in Dillon, Mishler, Sloggett,
and Phillips (2011), Lago, Shalom, Sigman, Lau, and Phillips
(2015), and Wagers et al. (2009). Except for the eyetrack-
ing experiment by Dillon and colleagues, all the other studies
were self-paced reading experiments. In these data-sets, the
dependent measure was reading time in milliseconds at the
auxiliary or the region following it. Most of the 10 studies

1The cue-based retrieval account may a priori be implausible be-
cause it predicts that an incorrect dependency is built between cabi-
nets and are; building such a dependency would imply that the sen-
tence has the implausible meaning that the cabinets are on the ta-
ble. The reader should detect such an implausible meaning and this
should lead to a slowdown rather than facilitation.

13



found statistically significant effects in this post-critical re-
gion. What is noteworthy here is the consistently negative
sign of the effect of interest; this consistency is much more
informative than the statistical significance of individual stud-
ies.

We first reanalyzed these 10 data-sets in order to confirm
the facilitatory effect reported.2 We fit Bayesian hierarchi-
cal models to each data-set using Stan (Stan Development
Team, 2016). We fit Bayesian models because of the ease
with which statistical models can be defined flexibly to re-
flect the cognitive process of interest.

The model specification was as follows. Assume that (i)
i indexes participants, i = 1, . . . , I and j indexes items, j =
1, . . . ,J; (ii) yi j is the reading time in milliseconds for the
i-th participant reading the j-th item; and (iii) the predictor
x, which represents the experimental manipulation, is sum-
coded (±1). In our case, the condition (1a) is coded +1 and
the condition (1b) is coded −1.

Then, the data yi j (reading times in milliseconds) are de-
fined to be generated by the following process:

yi j ∼ LogNormal(β1 +β2xi j +ui +w j,σ
2
e) (1)

where ui ∼ Normal(0,σ2
u), w j ∼ Normal(0,σ2

w) and σ2
e is

the error variance. The terms ui and w j are called varying
intercepts for participants and items respectively; they rep-
resent by-subject and by-item adjustments to the fixed-effect
intercept β1. The variances σ2

u and σ2
w represent between-

participant (respectively item) variance.3 The facilitation ef-
fect is the estimate of β2 (on the log scale).

As priors, we chose the Cauchy(0,2.5) distribution for all
coefficients, and a half-Cauchy (with only positive values) for
the standard deviations. This are mildly informative priors
(Gelman et al., 2014) which express the belief that that the
most likely value of the parameter is near 0, but allows for a
wide range of non-zero values because of the fat tails of the
Cauchy.

As shown in Figure 1, the effects in each study consistently
show negative estimates of β2, which indicates a facilitation
in reading time at the auxiliary or a subsequent region. This
is consistent with both the feature percolation and retrieval
interference accounts. There is a third explanation for the
observed facilitation effect in these studies, which we turn to
next.

An alternative explanation for the facilitatory effect
Consider the ungrammatical example sentences again. These
are repeated below for convenience:

2The published studies had other experimental conditions that
we do not discuss here. The published studies also used a trimming
procedure to analyze the data, and their analysis was done on the raw
millisecond scale. Thus, our analysis has some differences from the
original analyses, but the conclusions are substantially unchanged.

3This so-called crossed participants and items varying intercepts
linear mixed model can be made more complex by adding varying
slopes for the factor X by participant and by item, but for space
reasons we do not consider these more complex models here.
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Figure 1: The parameter estimates of the hierarchical model
fitted to the 10 data-sets. The condition representing (1a) is
coded +1 and the condition representing (1b) is coded−1, so
that parameter beta 2 shows a facilitation effect if its value
is negative. Shown are the estimates of the facilitatory ef-
fect (beta 2), and the standard deviations of (i) the error
(sigma e), (ii) the by-subjects varying intercepts (sigma u),
and (iii) the by-items varying intercepts (sigma w).

(2) a. The key to the cabinets are on the table.
b. The key to the cabinet are on the table.

In example (2b), both the nouns are marked singular,
whereas in example (2a) the nouns have different number
marking. As discussed in Villata and Franck (2016), the sim-
ilarity in number of the two nouns in (2b) could be the un-
derlying cause for increased processing difficulty, compared
to (2a). The identical number marking in (2b) could lead to
increased confusability between the two nouns, leading to
longer reading times at the moment when a subject noun is
to be accessed at the auxiliary verb. The feature overwrit-
ing model of Nairne (1990) formalizes this idea. To quote
(p. 252): An individual feature of a primary memory trace
is assumed to be overwritten, with probability F, if that fea-
ture is matched in a subsequently occurring event. Interfer-
ence occurs on a feature-by-feature basis, so that, if feature b
matches feature a, the latter will be lost with probability F .

The Nairne proposal has a natural interpretation as a finite
mixture process. Specifically, feature overwriting could occur
with a higher probability in example (2b) compared to (2a).
This assumption implies that the reading times in both (2b)
and (2a) are generated from a mixture of two distributions. In
a particular trial, if no feature overwriting occurs, the reading
time would come from a Lognormal distribution with some
location and scale parameters; this situation would result in
minimal processing difficulty in carrying out a retrieval and
detecting the ungrammaticality. In other trials, when feature
overwriting does occur, the reading time would have a larger

14



location parameter, and possibly also a larger scale parame-
ter; this would represent the cases where additional difficulty
occurred due to feature overwriting.4

An explicit assumption here is that feature overwriting
could occur in both (2b) and (2a), but the proportion would
be higher in (2b). It is also possible to assume that feature
overwriting only occurs in (2b), but due to space reasons we
do not consider this and other alternative models here.

Thus, in the mixture model implementation of the Nairne
proposal, one distribution will have a larger location param-
eter (and perhaps also the scale parameter). In the modelling
presented below, one goal is to estimate the mixing propor-
tions of these distributions. In the results section, we will
refer to the proportion of the slow reading time distributions
in (2b) as prob hi, and in (2a) prob lo. The suffixes hi and
lo here refer to whether we expect confusability to be high or
low.

To summarize, the feature percolation, cue-based retrieval,
and feature overwriting models all predict facilitation in the
ungrammatical sentences (2a) compared to (2b), but the un-
derlying generative process assumed in each model is differ-
ent. Feature percolation and feature overwriting can be seen
as finite mixture models of different types, and cue-based re-
trieval can be seen as implemented by the standard hierarchi-
cal model. Our goal here is to implement all the three propos-
als as statistical models and then compare their relative fit to
the data in order to adjudicate between them. Before we do
this, we introduce finite mixture models.

Finite mixture models
A finite mixture model assumes that the independently dis-
tributed outcome yi, i = 1, . . . ,N is drawn from one of sev-
eral distributions. Each distribution’s identity is controlled
by a Categorical distribution. For example, assume that
we have K distributions with location parameter (the mean)
µk ∈ R and scales (standard deviation) σk ∈ (0,∞), where
k = 1, . . . ,K. Assume also that we have a vector of probabili-
ties < λ1, . . . ,λK >= Λ that represent the mixing proportions.
The parameters λk are non-negative values and they sum to 1.

Thus, if the K distributions are mixed in proportion Λ,
where λk ≥ 0 and ∑

K
k=1 λk = 1, for each outcome yi there is a

latent variable zi ∈ {1, . . . ,K}with a Categorical distribution5

parameterized by λ : zi ∼ Categorical(λ). The variable yi
is then distributed as follows:

yi ∼ Normal(µzi ,σ
2
zi
) (2)

Assuming that each of the K mixture distributions f (·) has

4In grammatical sentences like The key to the cabinet/s is. . . ,
both feature overwriting and cue-based retrieval predict a slowdown
when the nouns have the same number. The literature largely shows
no difference in reading time. But the two models’ relative perfor-
mance can still be investigated; we plan to do this in future work.

5The Categorical distribution can be seen here as the Bernoulli
distribution in the case where K=2. In this paper, we focus only on
the K=2 case.

a vector of parameters θk associated with it, the mixture den-
sity can be written in the following manner:

p(yi | θ,Λ) = λ1 · f (yi | θ1)+ · · ·+λK · f (yi | θK) (3)

A random variable Y with the above density can then be
written in abbreviated form as follows.

Y ∼ λ1 f (y | θ1)+ · · ·+λK f (y | θK) (4)

In this paper, we consider a mixture of LogNormals with
K = 2; this is because the feature overwriting model assumes
a mixture of two distributions. We choose LogNormals to
model reading times because reading times must be greater
than 0 and follow a LogNormal distribution. We will write
the models as follows:

Y ∼λ1 ·LogNormal(µ1 +δ,σ2
1)+(1−λ1) ·LogNormal(µ1,σ

2
2)

where σ
2
1 = σ

2
2 or σ

2
1 6= σ

2
2

(5)

The parameter δ marks the shift in the mean in the first mix-
ture distribution relative to the second mixture distribution.
Note that the scale parameters (σ1,σ2) can be either identical
(homogeneous variances) in both distributions, or different
(heterogeneous variances). We will consider both types of
models here.

The above models assume that the data are independent.
When we have repeated measures data, the independence as-
sumption is no longer valid. In order to address this issue, fi-
nite mixture models can be made hierarchical by adding vary-
ing intercepts for subjects (indexed by i) and items (indexed
by j):

yi j ∼λ1 ·LogNormal(µ1 +δ+ui +w j,σ
2
1)+

(1−λ1) ·LogNormal(µ1 +ui +w j,σ
2
2)

(6)

where ui ∼ Normal(0,σ2
u) and w j ∼ Normal(0,σ2

w). Thus,
the mixture model with K = 2 will have the following param-
eters: four variance components, σ2

1,σ
2
2,σ

2
u, and σ2

w; two co-
efficients µ1 and δ; and two probabilities λ1 and λ2 =(1−λ1).

An evaluation of the Nairne feature overwriting
proposal

Method
Implementing the Nairne proposal We fit the homoge-
neous and heterogeneous variance hierarchical mixture mod-
els to the 10 reading time data-sets that compared reading
times at the auxiliary or the following region for sentences
like (2a) and (2b).

The data were assumed to be generated from a two-mixture
Lognormal distribution with either a homogeneous variance
in both mixture distributions, or heterogeneous variances.
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Thus, for the high confusability condition (2b), we consid-
ered two models:

Homogeneous variance feature overwriting model

yi j ∼prob hi ·LogNormal(β+δ+ui +w j,σ
2
e)+

(1−prob hi) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w)

(7)

Heterogeneous variance feature overwriting model

yi j ∼prob hi ·LogNormal(β+δ+ui +w j,σ
2
e′)+

(1−prob hi) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w)

(8)

In both models, yi j is the reading time in milliseconds from
subject i and item j. The probability prob hi represents the
mixing probability of the distribution that generates the slow
reading times corresponding to trials where feature overwrit-
ing occurred (2b). Although not shown, another mixture dis-
tribution is defined for example (2a); here, prob lo repre-
sents the mixing probability of the distribution that generates
the slower reading times corresponding to the trials where
feature overwriting occurred.

The homogeneous variance model assumes that both mix-
ture distributions have the same standard deviation σe. The
heterogeneous mixture model assumes that the mixture dis-
tribution that leads to the slower reading times is assumed to
have both a different mean (β+ δ) and a different standard
deviation (σe′ ) than the other distribution. Alternative mod-
els can be fit which relax these assumptions, but due to space
constraints we consider only these two models.

We had the following priors for the parameters:

prob hi∼Beta(1,1)
β,δ ∼Cauchy(0,2.5)

σe,σe′ ,σu,σw ∼Cauchy(0,2.5)
constraint: σe,σe′ ,σu,σw > 0

(9)

The priors for the variance components (the standard de-
viations σe, σe′ , σu, σw) and the coefficients representing the
means of the Lognormal distributions (β,δ) are mildly infor-
mative priors, as in the standard hierarchical model above.
These Cauchy priors assume that values of the parameters
near 0 are the most likely ones, but extreme values are possi-
ble. The Beta(1,1) prior for the mixing probabilities expresses
a large prior uncertainty, and express the assumption that the
probability is equally likely to be any value between 0 and 1.

Baseline models As baselines, we fit a model correspond-
ing to the retrieval interference account (the standard hierar-
chical model shown in equation 1 and summarized in Fig-
ure 1), and the feature percolation proposal. The latter also
assumes a mixture distribution, but only for the condition
corresponding to example (2a). Recall that the claim is that
in ungrammatical sentences, in some proportion of trials the
plural feature on the distractor cabinets moves up to the head
noun. In (2b), no such mixture process should occur because
percolation never occurs; hence a standard hierarchical Log-
Normal distribution can be assumed here. We therefore de-
fined the following generative process for (2a):

Feature percolation model

yi j ∼prob perc ·LogNormal(β+ γ+ui +w j,σ
2
e)+

(1−prob perc) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w),γ < 0

(10)

Note that in the specification above the parameter γ, which
represents the change in the location parameter, is constrained
in the model to be negative; this is because the assumption in
the feature percolation proposal is that percolation leads to
faster reading time.

For sentences like (2b), in which no percolation is assumed
to occur, we simply assumed a LogNormal generative pro-
cess:

yi j ∼ LogNormal(β+ui +w j,σ
2
e) (11)

Model comparison Having fitted the homogeneous and
heterogeneous variance models, as well as the baseline mod-
els (the cue-based retrieval and feature percolation models),
we need a method for comparing the quality of fit of the mix-
ture models relative to the standard hierarchical models. We
use an approximation of the leave-one-out cross-validation
(LOO), as discussed in Vehtari, Gelman, and Gabry (2016).
We find this approach attractive because it focuses on the pre-
dictive performance of the model. LOO compares the ex-
pected predictive performance of alternative models by sub-
setting the data into a training set (for estimating parameters)
by excluding one observation. The difference between the
predicted and observed held-out value can then be used to
quantify model quality by successively holding out each ob-
servation. The sum of the expected log pointwise predictive
density, êl pd, can be used as a measure of predictive ac-
curacy, and the difference between the êl pd’s of competing
models can be computed, including the standard deviation of
the sampling distribution of the difference in êl pd. When
comparing a model M1 with another model M2, if M2 has a
higher êl pd, then it has a better predictive performance com-
pared to M1. The model comparisons are transitive; if a third
model M3 has a higher êl pd than M2, then it has a better per-
formance than M1 as well. Vehtari and colleagues have devel-
oped an efficient computation of LOO using Pareto-smoothed
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importance sampling (PSIS-LOO), This is what we use here.
For details of PSIS-LOO, see Vehtari et al. (2016).

Results
Table 1 shows model comparisons between the standard hi-
erarchical model, corresponding to the retrieval interference
account, and the homogeneous variance model. The table
shows that apart from study 1, the homogeneous variance
feature overwriting model is clearly superior to the retrieval
interference model because it has higher êl pd values. Ta-
ble 1 also shows that the homogeneous variance feature over-
writing model furnishes a better fit than the feature percola-
tion model. Finally, the table shows that, except for study 1,
the heterogeneous variance model is superior to the homoge-
neous variance model.

Since the model comparisons are transitive, we can con-
clude that, among the models compared, the heterogeneous
variance feature overwriting model characterises the data
best. We therefore focus on the parameter estimates of the
heterogeneous variance model below. The estimates from
the models for the 10 data-sets are shown in Figure 2. In
this model, two noteworthy points are the following: (i) The
variance of the high confusability distribution (sigmap e; this
corresponds to σe′ in the models defined earlier) is relatively
large compared to the other variance components; (ii) The
difference in probabilities of the two mixture distributions,
diffprob, is generally greater than 0 across all the studies;
however, the uncertainty in the estimate of the probability in
study 1 is very high. These two observations suggest that
there is more variability in the reading time when the fea-
ture overwriting occurs, and that there some evidence that the
proportion of trials with feature overwriting is higher in the
condition with two singular nouns, consistent with the Nairne
proposal.

In summary, overall there is good motivation to assume that
in the condition with two singular nouns (example 2b), a pro-
portion of trials comes from a distribution with a larger mean
and larger standard deviation, and this proportion is higher
than in the condition with one singular and one plural noun
(example 2b).

Discussion
We implemented as a statistical model the proposal that nouns
with similar feature marking (here, number) may be more
confusable due to feature overwriting in some proportion
of trials, which in turn leads to occasional increase in dif-
ficulty in accessing the correct noun when a dependency is
to be completed between the subject and the verb. By fit-
ting Bayesian hierarchical two-mixture models, we showed
that 9 out of the 10 data-sets showed evidence for this in-
creased confusability in one condition over the other. The
feature overwriting account for the ungrammatical sentences
(2a, 2b) appears to be superior to both the retrieval interfer-
ence and feature percolation accounts.

The three accounts make the same predictions for ungram-
matical sentences—a facilitation effect. The modelling pre-

sented here allows us to quantitatively compare the relative
fit of these proposals for these otherwise indistinguishable
accounts. An interesting future direction is to evaluate the
predictions of these models for grammatical sentences such
as those considered in Franck, Colonna, and Rizzi (2015);
Villata and Franck (2016). We plan to address this in future
work.
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(a) Standard HLM vs. (b) Percolation vs. (c) Homogeneous variance vs.
Homogeneous variance Homogeneous variance Heterogeneous variance

mixture model mixture model mixture model
Study elpd diff SE elpd diff SE elpd diff SE

1 -0.29 1.67 29.55 6.97 0.57 1.09
2 56.98 13.57 76.34 14.26 15.20 6.07
3 97.62 16.10 112.40 17.43 57.12 11.11
4 71.29 14.08 84.78 14.12 19.66 8.77
5 112.74 18.17 120.45 18.56 63.28 18.12
6 66.84 12.59 85.97 13.88 43.58 12.18
7 72.45 13.76 80.93 14.72 80.92 14.41
8 88.50 14.60 90.22 14.77 40.17 11.87
9 78.35 14.21 108.10 16.04 26.21 7.76
10 90.08 14.14 105.23 15.02 33.59 11.95

Table 1: Comparison of the 10 sets of hierarchical models using PSIS-LOO. Shown are the differences in êl pd between
(a) the standard hierarchical model and the homogeneous variance mixture model; (b) the feature percolation model and the
homogeneous variance mixture model; and (c) the homogeneous vs. heterogeneous variance mixture model. Also shown are
standard errors for each comparison. If the difference in êl pd is positive, this is evidence in favour of the second model. The
pairwise model comparisons are transitive. These comparisons show that the heterogeneous variance mixture model has the
best predictive performance.
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Figure 2: Parameter estimates for the heterogeneous variance hierarchical mixture models.
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Abstract

This paper presents a simulation study focusing on implicit
memory in the formation of a new communication system.
In the models presented here, two agents aim to achieve their
common goal by exchanging messages composed of two fig-
ures, whose meanings are not defined in advance. The effect
of implicit memory has been studied with two different sym-
bolic processes, implemented in ACT-R. Our results indicate
that the difference caused by symbolic processes reduces when
implicit memory is incorporated into the model. We have also
found the effect of implicit memory on the creation of an iso-
morphic communication system, shared among agents. These
findings suggest that implicit memory has some roles in the
formation of a human communication system.
Keywords: Communication; imitation; implicit process;
ACT-R

Introduction
People try to communicate with others even when they do
not share a common language. They also understand others’
intentions through repeated interactions. It has previously
been speculated that humans have the ability to develop a new
communication system, where only limited common ground
is shared, in advance. Addressing the types of cognitive func-
tions involved in such a process will contribute to understand
the origins of human communication.

Some researchers have examined this question by design-
ing communication environments in laboratories (for a review
Galantucci & Garrod, 2011; Scott-Phillips & Kirby, 2010).
For example, Galantucci (2005) conducted an experiment to
observe the formation of communication systems, wherein,
a pair of participants communicated through a medium that
restricted the use of standard communication means, such as
utterances and letters. He observed the process of forming a
new communication system, and discussed that implicit in-
formation was conveyed through routine behavior.

Related studies have also been conducted in the field of lan-
guage acquisition. Most human infants naturally acquire lan-
guages, while a few experience difficulty. From the observa-
tions of such a developmental process, some behavioral char-
acteristics that lead to language learning have been found.
For example, Tomasello (1999) argued that a type of imita-
tion, called “role-reversal”, in which the child aligns him-
self/herself with the adult speaker, is essential for produc-
ing communicative symbols. The cognitive modules behind

this behavior have also been discussed. Baron-Cohen (1997)
hypothesized the Theory of Mind Module (ToMM) used for
imitations of intentional behaviors in others. Rizzolatti and
Arbib (1998) also suggests the origins of language from a
viewpoint of the mirror neuron system.

For the cognitive modeling community, the challenging
questions are: (1) how such modules are computationally rep-
resented, and (2) how are these integrated to a cognitive archi-
tecture that holds human-level goal management, and mem-
ory systems. Concerning these questions, several researchers
have constructed a model of language evolution (Reitter &
Lebiere, 2011), and an agent including the ToMM, (Stevens,
Weerd, Cnossen, & Taatgen, 2016) in the general cognitive
architecture.

In our previous study, we also developed a model of shar-
ing communication systems (Morita, Konno, & Hashimoto,
2012). In our model, agents were implemented in the ACT-
R cognitive architecture that posses general learning mech-
anisms such as reinforcement learning, and instance-based
learning (Lebiere, Gonzalez, & Martin, 2007). By incorpo-
rating imitative learning into these mechanisms, Morita et
al. (2012) investigated the role of imitation in the process
of forming a new communication system. The results of the
study indicated the importance of imitation to simulate the
formation process of a human communication system.

However, in our previous work, the production rules ex-
ecuting imitative learning were coded manually. This does
not provide the answer as to how these emerge from the
human memory system. To overcome this limitation, our
present study examines the process that substitutes the manu-
ally coded imitation process. This study especially focuses on
the role of implicit memory processes in forming a commu-
nication system. Before presenting the details of our present
study, we recapitulate concepts from our previous study.

Task
This research simulates the experiment reported in Konno,
Morita, and Hashimoto (2013), where the authors modified,
and used a coordination game taken from Galantucci (2005).
As in Galantucci’s study, the game environment contained
two characters, each controlled by a player, and four inter-
communicating rooms. The game was composed of several
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Figure 1: A single round of the coordination game consisted
of three steps. In step 1, to create a message, participants se-
lected figures by clicking the segments indicated by “Yours”.
In step 2, a character (blue boxes indicated by “You”) was
moved by drag-and-drop. In step 3, the result of the move-
ment was shown to participants. Blue boxes (“You-Pre” and
“You-Post”) and green boxes (“Pat-Pre” and “Pat-Post”) rep-
resent the movements made by the participant, and the part-
ner, respectively.

repeated rounds. At the beginning of each round, characters
were randomly placed in two different rooms. Players were
unaware of each others’ locations, and aimed to bring their
characters to the same room. The characters could not move
to rooms that were located diagonally. Owing to this con-
straint, players needed to communicate before moving their
characters.

Figure 1 presents the flow of each round, consisting of
three steps: step 1 for exchanging messages; step 2 for mov-
ing characters; and step 3 for confirming the result of their
movement. Among these steps, step 1 is the most crucial for
the success of this task. In this step, the two players con-
struct their own messages, composed of two figures such as
“ ”, using six available figures: , , , , , and

. The meanings and usages of the figures were not shared
with the participants in advance. Each player could send only
one message per round, but they could take turns in exchang-
ing messages. A message sent by the first sender instantly
appeared on the screen of the other player. The second sender
could compose her/his message after observing the message
of her/his partner (see participant 2 in Figure 1). Through
such turn-taking, the first sender could transmit her/his cur-
rent room location, and the second sender could transmit the
destination, while taking into account the current room loca-
tion of her/his partner. Participants were not assigned their
roles by the experimenter; instead, they were required to self-
assign their roles.

Figure 2: Schema of the model.

In the experiment reported in Konno et al. (2013), partic-
ipants (21 pairs) attempted to develop a communication sys-
tem within the stipulated one-hour time limit. When char-
acters moved to the same room, players received two points,
otherwise, they lost one point; although, the scores did not
drop below zero. The session was terminated when the score
reached 50 points. As a result, 66 percent of the participants
(14 pairs) successfully reached the points in 48.42 averaged
rounds. The models presented in the following section are
intended to simulate the behavior of such successful pairs.

Model
Architecture
The task presented in the previous section requires symbolic
learning for constructing a new symbol system. In addition,
according to Galantucci (2005)’s report, implicit learning,
which is not present in symbolic systems, possibly plays a
role in this task. Morita et. al (2012) constructed a model us-
ing ACT-R (Anderson, 2007), which integrates symbolic and
sub-symbolic learning mechanisms. This section illustrates
how our previous study constructed a model for sharing the
communication system.

ACT-R is composed of several independent modules. The
modules used in our study are presented in Figure 2. Except
for the production module, each module has a buffer to tem-
porarily store information, called a chunk (a set of slot-value
pairs). The production module integrates the other modules
using production rules, which consist of a condition-action
pair that is used in sequence with other productions to per-
form a task. The conditions and actions in the production
rules are specified, along with the buffer contents of each
module.

In the model presented in Morita et al. (2012), two inde-
pendent agents interact through a simulated task environment
developed in the ACT-R graphical user interface (AGI). AGI
provides screens that hold visual information as chunks. In
this study, the locations of the characters, and messages asso-
ciated with each agent are displayed on the screen. An agent’s
visual module searches for a character and stores its location
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Figure 3: Process of the model. Circles indicate decisions
based on conflict resolution.

(room) in a visual buffer. The visual buffer also stores the
symbols that compose a message, attending to the screen lo-
cations where the figures appear. The simulated task environ-
ment also provides a virtual mouse to change the figures and
move the characters on the screen.

Visual information stored in the visual buffer is transferred
to the goal buffer through the production module. The goal
buffer holds the goal of the current task, and other task-
related information. Specifically, our model has nine slots for
the goal buffer: four slots for storing room locations (initial
(from)-destination (to) × self-partner), four slots for storing
symbols (left-right × self-partner), and a slot for encoding the
order for the exchanged messages.

The declarative module stores past states of the goal buffer,
as instances. It also stores chunks representing task con-
straints such as path information indicating a room that
the characters can move to (e.g., f rom to isa path),
or figures the agent can use to construct a message (e.g.,

isa f igure). An agent uses these chunks (i.e., declarative
knowledge) to choose its destination and construct a message.

The productions of the model construct the process pre-
sented in Figure 3. This process is divided into three steps,
just as in the original experiment (Figure 1). There are two
paths in this process. The left path is for the first sender,
and the right path is for the second sender. The choice of
path is made by conflict resolution, which is a comparison
of two conflicting productions, with noise added utilities. In
each phase of the path of the first sender, there is a conflict
(indicated by circles) between keeping the path of the first
sender, and changing to the path of the second sender. If in
any of these the agent selects the path of the second sender,
the agent tries to perceive the message of her/his partner from
the screen. When the agent obtains the message from her/his
partner, s/he realizes that s/he is the second sender (fills the
order slot with “2nd”). Otherwise, s/he resolves a conflict by
waiting for the message of her/his partner and changing to the

Figure 4: Three types of decision strategies.

path of the first sender. This conflict loop continues until one
of the agents sends a message.

Explicit decision process
In step 1, regardless of the contents of the order slot, both
agents make decisions about their destinations, and their mes-
sages. Concurrently, the first sender predicts the message that
s/he will receive from her/his partner. The predicted message
is checked against the message received in step 2. When the
received message is inconsistent with the predicted message,
the agent makes a new decision about her/his destination.

In summary, there are three situations where agents make
decisions: the first sender in step 1, the first sender in step 2,
and the second sender in step 2. In these situations, agents
apply one of the three decision strategies shown in Figure 4.
Every decision strategy begins by retrieving chunks from the
declarative module, by using the current goal buffer as a cue.
In the trial-error strategy, chunks concerning task constraints
(chunks representing a path and symbols) are retrieved, and
are used to fill in the blank goal slots. In the instance-based
strategy, the agent retrieves an instance that is consistent with
the current goal buffer. The retrieved instance is used to fill
slots concerning the destination, and symbols. The imitation
strategy also uses an instance, but the roles of an agent, and
her/his partner are reversed when retrieving and filling slots.
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Figure 5: The implicit process of the use of instance.

The implicit decision process
The decision strategies presented above follow a purely sym-
bolic process. Each production rule explicitly holds the map-
ping of slots from the goal buffer to memorized chunks. Such
a process needs different rules, which correspond specifically
to each decision situation. Figure 4 only shows an example of
the first sender in step 1, where the location-self-from slot is
used as a retrieval cue. In addition to this slot, a partner’s mes-
sage, (the symbols-partner-left slot, and the symbols-partner-
right slot) can be used as retrieval cues by the second sender
in step 1. In the case of the first sender in step 2, where the
goal buffer contains the message sent by the agent, more com-
plex retrieval cues are available.

In order to maximize information sent through the ex-
changed message, it would be better to use instances wherein
the slots are either perfectly, or partially matched to the cur-
rent goal buffer. In the model constructed by Morita et al.
(2012), there are rules concerning each combination of buffer
slots and matching states for the two decision strategies in
all the situations. However, this approach will face difficulty
when the model is applied to open communication tasks,
where the number of signals, or the number of turns are not
decided in advance. Apparently, the model needs to have ab-
stract mechanisms that permit the acquisition of such sym-
bolic processes.

We have not yet solved this problem perfectly. However,
in this paper, we propose another process possibly involved
in forming a shared communication system, and show the be-
havior of this for future model development. The proposed
mechanism tries to represent unintentional processes in im-
itation. People sometimes copy others’ ideas even when it
is not their intention to do so. Those phenomena have been
studied in the context of source monitoring error (Johnson,

Hashtroudi, & Lindsay, 1993) or deficits in self-other diffren-
ciations (Baron-Cohen, 1985).

We consider that spreading activation and partial match-
ing are useful to realize such unintentional imitation. These
are part of ACT-R sub-symbolic computation, which controls
the activation of chunks. The spreading activation represents
contextual effects caused by chunks, held by the goal buffer.
The same chunks stored in the declarative module receive ac-
tivation from the goal buffer. The ACT-R memory process
usually retrieves chunks having the highest activation within
the constraint of the retrieval cues, made by the production
rule. When the partial matching process is enabled, it is pos-
sible for a chunk that is not a perfect match to the retrieval
cues to be the one that is retrieved (Bothell, n.d.).

The combination of the two mechanisms characterizes the
process presented in Figure 5, which presents an application
of the implicit process to the two strategies by using an ex-
ample of the second sender in step 1. The solid one-directed
arrows connecting the goal buffer with the declarative mod-
ule indicate the symbolic process noted in the production rule
(retrieval cues / fill slots). The dotted two-directed arrows in-
dicate the association connected by the spreading activation.

Importantly, in this figure, the instance-based strategy and
the imitation strategy reach the same conclusion. Although
the retrieval cues made by the instance-based strategy do
not match the instance in the declarative module, the values
stored in the slots other than the requested ones accidentally
match to the state of the goal buffer. Consequently, this in-
stance receives the high activation, and is retrieved from the
declarative module. The retrieved instance is applied with a
filling rule used in the imitation strategy.

The benefit of such an implicit imitative process involves
reducing the complexity of symbolic processes. However,
it is unknown whether the ACT-R sub-symbolic computa-
tion actually generates such imitative effects. To explore the
role in the formation of human communication systems, it is
needed to examine the behavior of this mechanism in a con-
trolled simulation experiment.

Simulation
Simulation conditions
We first set up the following two models controlling the deci-
sion strategies presented in Figure 4.
• Instance model: In this model, the agent first tries the

instance-based strategy. If the instance-based strategy fails,
the agent chooses her/his destination and message based on
the trial-error strategy.

• Imitation model: This model extends the instance model
by adding the imitation strategy. The agent first tries to
choose her/his destination and message using the instance-
based strategy. If the agent fails to retrieve an instance,
the imitation strategy is applied. When all other decision
strategies fail, the agent uses the trial-error strategy.
In our previous study, the imitation model indicated better

performance and better fitting to the human data. The imita-
tion strategy gives the model the benefit of using instances in
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Table 1: The performance indices. The numbers in parenthe-
ses indicate standard deviation.

Data ExIns ExImi ImpIns ImpImi
Success rates 0.66 1.00 1.00 0.97 0.98
Round 48.42 70.74 60.21 115.48 117.33

(13.36) (17.63) (13.14) (35.51) (37.13)

different ways. Therefore, the success rates of the imitation
model are higher than the instance model in the early round.

With respect to the implicit process, we also set up the fol-
lowing two conditions.
• Explicit process: This model does not have the spread-

ing activation, and partial matching mechanisms. As sub-
symbolic parameters, only the activation noises, and the
expected gains are set (blc = 2,ans = 0.5,egs = 1) to make
the behaviors of the two agents differ. Except for this pa-
rameter setting, this model is same with the model pre-
sented in Morita et al. (2012)

• Implicit process: This model includes the implicit process
presented in Figure 5. In addition to the sub-symbolic
parameters noted in the explicit process, the matching
penalty, and the maximized associative strength are set
(mp = 2, mas = 10, blc = 2). This model also has several
supplemental production rules to deal with memory errors,
caused by partial matching.
Combining the symbolic, and sub-symbolic conditions, we

prepared four models: ExpImi (the imitation model with the
explicit process), ImpImi (the imitation model with the im-
plicit process), ExpIns (the instance model with the explicit
process), and ImpIns (the instance model with the implicit
process). By comparing these, we try to identify the role of
implicit processes in forming a shared communication sys-
tem.

In this simulation, each model runs 100 times. In each run,
the model continues the trial session for 3,600 sec1, or until
the scores reach 50 points. Following the trial session, the
model is engaged in three test sessions similar to the experi-
ment presented in section 2.

Results
Performance Table 1 shows the proportion of runs/pairs
whose scores reached 50 points, which is a termination con-
dition for the session. It also presents the numbers of rounds
required to reach the termination condition. Some runs uti-
lizing the implicit model failed to form a communication sys-
tem; whereas, all runs utilizing the explicit model succeeded
in completing the session. Even though there were pairs that
did not reach the termination condition, the number of rounds
required to complete the session in the experiment (data) was
smaller than that in all other models. Compared to the im-
plicit models, the explicit models finished the session in fewer
rounds. The effect of the decision strategy is only observed in

1We used the simulation time estimated by ACT-R.

Table 2: Fitting of the model performance to the human data.
ExIns ExImi ImpIns ImpImi

RMSE 0.11 0.10 0.20 0.20
R2 0.71 0.78 0.74 0.74
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Figure 6: The ratio of sucess at each round.

the explicit models, where the imitation model finished faster
than when using the instance-only strategy.

The detailed processes are presented in Figure 6, which
indicates the proportion of runs/pairs who met in the same
room for each round. Table 2 also shows fitting indices cal-
culated from the figure. Although the explicit models have
a smaller absolute distance to the human data (RMSE) than
the implicit models, there are no remarkable differences of an
overall trend (R2) between the four models.

Messages People usually try to share the same communi-
cation system even when their first languages are different.
To model such characteristics of human communication, we
examine the similarity of the constructed message system, as
indicated by the following index.

Sim = M⃗player1 · M⃗player2 (1)

where M⃗ indicates a vector whose element corresponds to the
use frequency of the 36 combination of figures. A dot product
of the two vectors represents the degree of symbol sharing
among agents.

Figure 7 indicates the moving scores of similarity with the
window size of 20 rounds. Table 3 summarizes the fitting to
human data, which is calculated from Figure 7. Among the
four models, ExImi shows the best fit to human Data, consis-
tent with the finding in Morita et al. (2012). It is noteworthy
that models with the implicit process replicate the temporal
trend of the similarity score, even without the explicit imi-
tation strategy. The difference between the instance and the
imitation models is also quite small in the implicit process.

Table 3: Fitting of the similarity score.
ExIns ExImi ImpIns ImpImi

RMSE 0.38 0.16 0.29 0.29
R2 0.06 0.72 0.57 0.64
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Figure 7: Similarity of messages at each round

Discussion and Conclusions
This study constructed a model that forms a new commu-
nication system through interactive coordination. To date,
many models for language evolution have been developed
(for a review Steels, 2011). In addition, there exists a re-
search that uses ACT-R to simulate experiments of forming a
communication system (Reitter & Lebiere, 2011). However,
such studies have not dealt with a situation with spontaneous
turn-taking, or role-setting operations. Most of the previous
models assign roles to agents, including being a director, or
matcher, using simulation parameters.

Setting such an interactive situation, this paper examined
the effect of implicit processes in forming a shared commu-
nication system. The results indicate a clear influence of
the process on both the performance, and the similarity of
messages. Importantly, adding the implicit process into the
model, the difference caused by the explicit process almost
disappeared. Although these findings alone are not enough to
draw a concrete conclusion, this study shows that an isomor-
phic symbol system can be made without hand-coded imita-
tions.

However, compared to human data, the implicit process re-
sults in a slower forming process, as presented in Table 1.
Several explanations can be considered for this difference.
The first explanation is about heuristics, utilized by human
participants. Some participants in the experiment used to
indicate the upper-rooms based on the shape similarity to the
upper arrows. If such a pre-existing common ground is used
in the model, the performance will undoubtedly increase. The
other possible explanation relates to individual differences.
As suggested by the failure pairs in the experiment, there are
large variations in the formation process of the symbol com-
munication system, in the collected human data. The litera-
tures in the field of developmental psychology also indicate
that children on the autism spectrum exhibit a unique lan-
guage acquisition process (Baron-Cohen, 1985, 1997). Con-
sidering these factors, we can hypothesize that cognitive func-
tions involved in forming a communication system are not
determined uniquely, and the variations of the ACT-R model
presented here might represent such individual differences.

To examine this hypothesis, our future study will analyze the
detailed behavior characteristics involved in this task. Espe-
cially, we will improve the similarity score used in this study
to include characteristics of the syntax (combination rules of
symbols), and symbol-meanings mappings.
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Abstract

Rumination is a process of uncontrolled, narrowly-foused neg-
ative thinking that is often self-referential, and that is a hall-
mark of depression. Despite its importance, little is known
about its cognitive mechanisms. Rumination can be thought
of as a specific, constrained form of mind-wandering. Here,
we introduce a cognitive model of rumination that we devel-
oped on the basis of our existing model of mind-wandering.
The rumination model implements the hypothesis that rumina-
tion is caused by maladaptive habits of thought. These habits
of thought are modelled by adjusting the number of memory
chunks and their associative structure, which changes the se-
quence of memories that are retrieved during mind-wandering,
such that during rumination the same set of negative memo-
ries is retrieved repeatedly. The implementation of habits of
thought was guided by empirical data from an experience sam-
pling study in healthy and depressed participants. On the ba-
sis of this empirically-derived memory structure, our model
naturally predicts the declines in cognitive task performance
that are typically observed in depressed patients. This study
demonstrates how we can use cognitive models to better un-
derstand the cognitive mechanisms underlying rumination and
depression.
Keywords: mind-wandering; rumination; associative mem-
ory; depression; sustained attention

Introduction
Rumination is the process of narrowly-focused uncontrolled
repetitive negative thinking—mostly self-referential—that
lies at the core of depression (Marchetti, Koster, Klinger, &
Alloy, 2016; Nolen-Hoeksema & Morrow, 1991; Treynor,
Gonzalez, & Nolen-Hoeksema, 2003). Despite the serious
clinical consequences of this process, there is to date no co-
herent computational cognitive theory that describes it. While
there are several verbal theories (Marchetti et al., 2016), those
can only explain their own limited set of experiments and do
not make quantitative predictions.

To develop a theory of rumination, we built on recent
research and modeling of mind-wandering, because rumi-
nation can be thought of as a highly constrained form of
mind-wandering (Christoff, Irving, Fox, Spreng, & Andrews-
Hanna, 2016). Mind-wandering is a process of task-
unrelated thinking that takes up approximately 50% of our
time (Killingsworth & Gilbert, 2010; Smallwood & Schooler,
2015), and can sometimes help and sometimes hinder perfor-
mance. For example, in very undemanding contexts, mind-
wandering can serve useful functions for creativity (Baird

∗ESM-MERGE Investigators (alphabetical order): D. Collip,
Ph. Delespaul, , N. Geschwind, M. Janssens, M. Lardinois, J.
Lataster, T. Lataster, C. Menne-Lothmann, I. Myin-Germeys, M. van
Nierop, M. Oorschot, C. Simons, J. van Os, M. Wichers.

et al., 2012) and planning (Baird, Smallwood, & Schooler,
2011). On the other hand, it disrupts performance when it
takes away cognitive resources that are needed to perform
the task, and this occurs in particular when mind-wandering
is unintentional and uncontrolled (Seli, Risko, Smilek, &
Schacter, 2016), as is the case with rumination. This could
explain why people that suffer from rumination typically also
report having difficulties concentrating.

So far, the theories of rumination can be broadly divided
into three classes. One class of theories suggests that ru-
mination arises from an increased bias towards negatively-
valenced information (Dalgleish & Watts, 1990). When at-
tention is focused more on negative information, this reduces
ability to focus on other things (Whitmer & Gotlib, 2013).
Another class of theories instead focuses on inhibition, and
suggests that the primary deficit underlying rumination is an
inability to disengage from information, in particular when
this information is negative and self-focused (Whitmer &
Banich, 2007). The third theory of rumination—which we
refer to as “habits of thought”—focuses not on control pro-
cesses such as attention and inhibition, but rather on the con-
tent of thoughts during mind-wandering. Patterns of memory
associations that are frequently rehearsed can become some-
thing like an attractor (Cramer et al., 2016), and therefore will
be replayed any moment there is time for mind-wandering.
To start to distinguish between these different theories of ru-
mination, it is helpful to specify them in more detail by im-
plementing them in a cognitive architecture, and to simulate
their predictions for performance on a simple sustained at-
tention task. Here we will start by implementing the habits of
thought theory, which is of interest because it exploits the fact
that the ACT-R cognitive architecture is in essence a memory
theory.

To implement our theory of rumination, we will
make use of our own computational model of mind-
wandering (Taatgen, van Vugt, Daamen, Katidioti, & Borst,
submitted; van Vugt, Taatgen, Bastian, & Sackur, 2015). This
model frames mind-wandering in terms of resource compe-
tition, in which task goals compete with mind-wandering
goals, and mind-wandering occurs when that goal wins the
competition. Mind-wandering is modelled as a process of
memory retrieval. Consequently, the mind-wandering model
is uniquely suited for implementing the third theory of rumi-
nation, which says that rumination is driven by the existence
of thought habits that are maladaptive. We hypothesize that
these thought patterns are what causes people to get caught
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Figure 1: Reported positive and negative affect. (a) shows the frequency with which participants reported experiencing partic-
ular degrees of positive and negative affect in the experience sampling data, while (b) shows the summed activation of positive
and negative chunks produced by the model (our closest proxy for the continuous affect ratings in the empirical data).

in a funnel of repetitive negative thinking, and disconnect
from the current task, which leads to the perceived problems
in concentration. This predicts that a model of rumination
with exactly the same production rules but a different mem-
ory chunk structure should perform worse on a sustained at-
tention task than a “healthy model.” Later studies should im-
plement the other two theories of rumination, and examine
how their predictions may differ.

Methods
Mind-wandering model
We implemented our mind-wandering model (which forms
the basis for the rumination model) in the adaptive control of
thought-rational (ACT-R) architecture (Anderson, 2007; An-
derson, Fincham, Qin, & Stocco, 2008). The model rests on
two basic assumptions: firstly, there is a continuous competi-
tion between a mind-wandering and a task process, and con-

sequently, mind-wandering is likely to kick in when there is
a spare moment in the task, and secondly, mind-wandering
is primarily a process of memory retrieval (van Vugt et al.,
2015; Taatgen et al., submitted); implemented as retrieving
chunks from declarative memory. As is usual in ACT-R’s
memory retrieval, the most active chunk is the one that will be
retrieved. Each chunk’s activation is determined by three fac-
tors: the amount of recent use (more recent and more frequent
use imply a larger chunk activation), the spreading activation
from other chunks, and random activation noise. Since each
chunk has a slot containing its emotional valence, the spread-
ing activation ensures that chunks with the same emotional
valence are more likely to follow each other than chunks
with different emotional valence, in line with previous empir-
ical results (van Vugt, Shahar, & Britton, 2012). The mind-
wandering memory retrieval process continues until a mem-
ory chunk that is retrieved reminds the model of its main task.
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Figure 2: The probability for memories being retrieved de-
pends on their emotional valence. (a) The control model
retrieves every mood more or less equally often, while the
depressed model preferentially retrieves negatively-valenced
items. (b) Empirical data shows that depressed participants
experienced each mood with comparable intensity, while
non-depressed controls displayed a bias towards positive
moods. Error bars reflect standard error of the mean.

At that point, the main goal switches from mind-wandering to
being on-task. During the period of mind-wandering, the re-
trieval module is busy retrieving memories, which means that
responses to incoming stimuli will be done in automatic mode
by giving the default response, and will not involve mem-
ory retrievals. In addition, since ongoing memory retrievals
(which occur during mind-wandering) first have to be finished
before a response is made, the mind-wandering process re-
sults in an increase in the variability of response times during
mind-wandering, in line with behavioral findings (Bastian &
Sackur, 2013; van Vugt & Broers, 2016).

The mind-wandering model was given a sustained atten-
tion to response task—SART (Cheyne, Carriere, & Smilek,
2009; Smallwood et al., 2004) to make testable predictions
for behavioral. In this task, participants see a stream of dig-
its, presented at a pace of one per three seconds, and they
press a button whenever a digit is presented, except when it
is the number three. The number three, the nogo stimulus, is
presented on roughly 10% of the trials. This means that when
participants do not pay attention, they will revert to an auto-

matic mode of responding, and fail to inhibit responses to the
rare nogo stimuli.

Adaptations for modeling rumination
Our rumination model implemented the “habits of thought”
theory of rumination. The main idea underlying this the-
ory is that rumination consists of retrieval of a set of well-
rehearsed thought patterns that are predominantly negative
and self-referential. We tried out different methods for gen-
erating strong loops of self-referential negative thinking, and
found that the most effective way was to increase the num-
ber of chunks with negative valence, such that these negative-
valence chunks are more likely to be retrieved. This increase
in the number of negative-valence chunks also increases the
amount of spreading activation between them. Specifically,
the non-depressed model has 55 chunks in total, 11 per mood
(cheerful, content, down, insecure, suspicious—these moods
were derived from the empirical data described below). The
depressed model also has 55 chunks, but those consist of
5 chunks of each of the positive moods (cheerful and con-
tent), and 15 chunks of each of the negative moods (down,
insecure and suspicious). For both models, the association
strengths (S ji’s) were 0.1 between moods of the same valence,
and 0.01 between moods of different valence. These associa-
tion strengths were chosen such that the spreading activations
were roughly balanced with the base level activations, and
slightly adjusted to better fit the empirical data. Our rumina-
tion models differ from our previous mind-wandering model
in that there are two chunks that remind the user of the main
task—one with positive and one with negative valence—
instead of just one with a positive valence as was the case
in the previous model.

To assess model performance, we simulated data for 100
participants suffering from rumination, and 100 participants
with the usual model structure (i.e., without rumination). We
chose for 100 participants because this is in the same ballpark
as the empirical data. We then measured how many chunks
of each mood the model recalled during mind-wandering
episodes, together with their transition probabilities. These
measures were compared to the experience sampling data
described below to adjust the model. Once the models’
memory structures were adjusted to exhibit thought contents
similar to what was observed in the experience sampling
data, we looked at the model’s task performance, and exam-
ined whether rumination impaired performance on a simple
go/nogo task (as would be expected).

Experience sampling data on depression
We configured the set of memory chunks and their asso-
ciative structure on the basis of an experience sampling
study (Wigman et al., 2015). In such a study, participants
are prompted several times a day to respond to a brief ques-
tionnaire about their thoughts and experience. This study
found that depressed patients had an increase in the number
of negative-valence thoughts, more difficulty concentrating,
and most importantly, a network of negative thoughts (specif-
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Figure 3: Transitions between different moods. (a) Difference between control and depressed networks in empirical data from
Wigman et al. (2015) on the basis of regression coefficients. (b) Modeled network difference between depressed and control
participants on the basis of transition probabilities. Green: control > depressed. Red: depressed > control.

ically, suspicious, down, and insecure) that was much more
separate from the network of positive thoughts (content and
cheerful) than in the control subjects. The experience sam-
pling data we used in this study was collapsed across all par-
ticipants in the depression and control groups. It contained
data from 129 depressed patients and 212 non-depressed con-
trols, who were sampled ten times per day for a period of 5-6
days.

Results
Average thought frequencies

Rumination is associated with increased negative memory
and a prevalence of negatively valenced thought. To exam-
ine whether our model could reproduce those findings, we
first compared the activation of positive-valence and negative-
valence chunks, as well as the frequency of retrieval of the
different subcategories. A challenge in this comparison is
that the empirical data consists of the average rating of pos-
itive and negative emotions on a 7-point Likert scale, which
has no direct correlate in the model. Since the judgment is
supposed to reflect a participant’s general mood, we used the
summed activation of all positive/negative chunks as a proxy
for positive and negative affect, respectively.

We were able to reproduce an increase in the summed
memory activation of negative chunks, and a decrease in
the summed memory activation of positive chunks (Fig-
ure 1(b)). We then examined how frequently positive and neg-
ative memory chunks were retrieved by healthy and depressed
models. Figure 2(a) shows that while the healthy model re-
trieves positive and negative valence equally frequently, the
depressed model tends to retrieve negative chunks more fre-
quently (which then leads to a feedback loop, because these
negative chunks then become more active, which makes it
likely that they will be retrieved even more often). The empir-

ical data (Figure 2(b)) are somewhat similar, although here it
appears as if healthy participants relatively suppress negative
memory chunks. Note that this is at odds with a substantial
body of literature that reports a negativity bias for depressed
patients (Whitmer & Gotlib, 2013) instead of a positive facil-
itation in healthy controls (but see Levens and Gotlib (2010)).

Transitions between moods

A unique feature of the data presented in Wigman et al.
(2015) was that not just frequencies of different types of
thought were presented, but also the network of the transi-
tions between different moods. In the empirical work by Wig-
man et al, these transitions were measured by fitting a mul-
tilevel linear mixed effect model to the data. Each score at
time t − 1 was used to predict the score at time point t, and
this resulted in a fixed-effect coefficient for each connection
between moods. The difference in magnitude of these coef-
ficients between depressed and control participants is shown
in Figure 3(a). The largest difference between healthy and
depressed participants that our model needs to capture is
an increase in the number of transitions between negative-
valence chunks for the depressed patients, together with a
decrease in the number of transitions between positive and
negative valence chunks. As before, we cannot produce ex-
actly the same measure in our model, which retrieves one
memory chunk at a time. The closest approximation to the
regression coefficients in the empirical data are transition
probabilities between retrieved memory chunks with differ-
ent moods. Figure 3(b) shows that when we measure the
transitions for the depressed and control networks, we repro-
duce the somewhat stronger between-negative connectivity
and the somewhat weaker positive-to-negative connectivity
for the depressed model. Nevertheless, the modelled effects
are not as strong as in the empirical data.
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Figure 4: Comparison of performance of the control (orange)
and rumination (blue) model on a sustained attention to re-
sponse (go/nogo) task. The depressed model shows lower ac-
curacy (a) but no difference in the fraction of mind-wandering
(b),or coefficient of variation of response time to correct re-
sponses. Error bars reflect standard error of the mean.

Novel predictions: task performance
After having developed a rumination model by adapting the
memory structure (i.e., thought patterns) on which it operates,
we can examine how it performs on a cognitive task. In the
data reported by Wigman et al. (2015), depressed participants
reported having significantly more difficulty in concentrat-
ing than healthy controls (t(4098.8)=-44.1, p< 2.2∗10−16)†.
Consequently, we predicted that the rumination model would
exhibit an impairment on a sustained attention task that is typ-
ically used to measure mind-wandering, and that it would be
distracted more frequently. Figure 4(a) shows that perfor-
mance on a sustained attention to response task was worse
for the depressed relative to the control model (t(196.5)=2.2,
p = 0.03). A potential reason for this decline in performance
is an increase in the amount of off-task thinking (Figure 4(b),
although this change in off-task thinking was not statistically
significant, t(197.8)=0.53, p= 0.60). There is also no signifi-
cant difference in the coefficient of variation of response time
(Figure 4(c); t(195.1)=1.39, p = 0.17), which is considered
to be a sensitive index of off-task thinking.

Discussion
In summary, we have developed a novel approach to mod-
eling psychopathology by means of cognitive architectures.
We structured the model’s memory on the basis of experience
sampling data. We then used our existing mind-wandering
model to make predictions for how performance on a sus-
tained attention task would be impacted by rumination. We
found that merely by modifying the structure and contents of
the model’s memory, we were able to produce retrieval fre-
quencies and sequences similar to what was observed in the
experience sampling study. In addition, our model predicted

†T-tests used Welch’s correction for degrees of freedom

impairments on a sustained attention task, in line with sub-
jective reports of participants about difficulty with concentra-
tion.

While the model’s performance was qualitatively in line
with the observations from Wigman et al. (2015), we were
not able to fit the exact patterns. This failure to fit may point
at a structural limitation of our individual model, or of the
general ACT-R cognitive architecture. It turned out to be
very difficult to “create” cycles of rumination because ACT-
R only adapts chunk activation, and not the associations be-
tween chunks, which may be the true habits of thought.

Another potential reason for this failure is our highly sim-
plified representation of moods. Previous studies have rep-
resented mood in terms of physiology (Dancy, 2013) or in
terms of expectations and desirability of the state of the
world (Marsella & Gratch, 2009).

Our study makes an important contribution to the nascent
field of computational psychiatry (Adams, Huys, & Roiser,
2016). So far, computational psychiatry involved mostly sim-
ple reinforcement learning models of psychiatric problems
(but see Kottlors, Brand, and Ragni (2012)), while we demon-
strated the utility of cognitive architectures. The advantage of
using cognitive architectures compared to simpler theories, is
that it is possible to simulate performance on many different
tasks. Moreover, it becomes possible to examine changes in
cognitive strategies (the “software of cognition”) in the same
context as changes in mental habits (the “hardware of cogni-
tion”), as we have demonstrated in this paper.

In summary, we have demonstrated how we can imple-
ment a cognitive theory of rumination, and make testable pre-
dictions about performance on a mind-wandering task. This
leads to new avenues in better understanding what the exact
mechanisms are that underlie rumination, and depression in
general.
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Abstract 
How do affective processes interact with cognitive processes 
to modulate our behavior? Understanding the processes that 
influence the interactions between affective stimuli and human 
decision-making behavior is important for predicting typical 
behavior under a variety of circumstances, from purchasing 
behavior to deciding when to enact certain rules of engagement 
in battle scenarios. Though some computational process 
models have been proposed in the past, they typically focus on 
higher-level phenomena and are less focused on the particular 
architectural mechanisms related to the behavior explored. 
This, in turn, can make it very difficult to combine the proposed 
model with existing related work (i.e., the models can’t be 
tractably combined). 
We used a modified version of the Iowa Gambling Task to 
explore the effects of subliminal affective (visual) stimuli on 
decision-making behavior. We developed a model that runs 
within the ACT-R/Φ architecture that completes the same task 
completed by participants. In addition to the affective and 
cognitive memory components particularly important to the 
discussion, the model also uses perceptual and motor 
components within the architecture to complete the task. The 
architecture has representations of primitive affect that interact 
with cognitive memory components mainly through an 
affective-associations module (meant to capture behavior 
typically ascribed to several amygdalar substructures). The 
model and affective architectural mechanisms provide a 
process-oriented explanation for the ways affect may interact 
with higher-level cognition to mediate human behavior during 
daily-life. 

Keywords: Cognitive Architecture; HumMod; ACT-R; 
Affect: IGT; Decision-Making; Emotion 

Introduction 
How do affective processes interact with cognitive processes 
to modulate our behavior? Though this question is important, 
we’ve only seen a relatively recent surge in computational 
process models that have explored this question (e.g., 
Marinier III et al., 2009; Marsella et al., 2010). Indeed, even 
Newell did not have emotion (and motivation) as a topic that 
was most important to address when developing a unified 
theory of cognition. As more evidence of the importance of 
emotional/affective processes has accumulated through 
experimentation and simulation, it has become clear that 
affect and emotion play a fairly central role in mediating 

behavior (e.g., Bechara et al., 1997; LeDoux, 2012; Panksepp 
& Biven, 2012). 

We conceive of emotion as an interaction between affective 
and cognitive processes. When we make these distinctions we 
do so with the idea that the two categories describe both 
qualitative and quantitative differences in computational 
processes that, nonetheless, interact within a whole 
computational behavioral system (e.g., see Figure 1 that 
describes differences in levels, Panksepp et al., 2011). We see 
affective processes as those modulate subsymbolic 
representations within the cognitive system, which results in 
certain behavior that may be deemed as emotional.  

 
Figure 1. Levels of behavioral processes from Panksepp et 

al. (2011) 
While some affective processes may have less quantitative 

effect on symbolic and subsymbolic representations 
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depending on context, the implication here is that no such 
human interaction is truly without some bias due to affective 
processes. Ultimately other portions of a conditional context 
may have more effect on resulting action (e.g., a current 
goal/intentional), however these affective processes still may 
have small effects on the representations/actions that occur in 
a computational cognitive system. Put in a more high-level 
example, just because one may ultimately elect to buy the 
more economically functional vehicle, doesn’t mean that the 
affective drive to select the new sports car did not factor into 
the decision. 

Below, we give a description of a decision-making study 
and some results from this study. The study used a modified 
version of the Iowa Gambling Task (IGT) that involved 
subliminally presented visual stimuli to explore the 
particularly non-conscious and subsymbolic effects of 
affective processes. We also detail and discuss an affective-
cognitive model of this task that uses components of the 
ACT-R/Φ architecture to represent interactions between 
affective and cognitive processes.  

Description of IGT Study and Results 
97 undergraduate students were recruited as participants for 
this study (52 males and 45 females). The average ages of 
males and females were similar at 20.7 and 19.8 
(respectively). Electrodermal Activity (EDA) data were 
collected for the final 66 (37 males and 29 females) 
participants (data not reported here). All participants were 
given college course extra credit for participation.  

A filter process that removed participants who completed 
less than 20% of their trials due to time restrictions (max 3.5s 
per trial) resulted in the removal of 4 participants’ data from 
further analysis; data from 93 total participants were 
analyzed. The negative, neutral, and positive (image) groups 
each had 31 participants. We ceased participant enrollment in 
the study after we crossed a 31 per-group threshold for task-
related behavioral analysis and all volunteers had the 
opportunity to participate. 

Participants used a version of the IGT that included a fixed 
reward and punishment schedule for each deck that was the 
same as the schedule used for the original IGT by Bechara et 
al. (2000). A modified computerized version of the IGT was 
used that runs in Matlab and uses the Psychtoolbox Matlab 
extensions (Brainard, 1997). Psychtoolbox extensions were 
used due to their high timing accuracy, community support, 
and cross-platform availability and the specific software used 
has had IGT-specific timing tests done to confirm timing 
accuracy (Dancy & Ritter, 2016). 

The visual stimuli presented during the IGT were obtained 
from the International Affective Picture System (IAPS; Lang 
et al., 1997). Table 1 lists the images used in image sets used 
by the different groups. Male and female pictures were 
matched so that, for each group, they had similar 
valence/arousal/dominance ratings and had a similar content 
subject; for example, some snake pictures had different 
ratings between sexes within the IAPS manual, so those 
images with lower valence/higher arousal ratings among the 
same category were chosen. Given that picture ratings in all 
categories differed between sexes, this method allowed more 
consistency in mean measured quantitative ratings among 
participant sexes. 

Table 1. The IAPS images (and the accompanying average 
valence, arousal, and dominance rating) used in the 

experiment. 
Picture-Set Picture Numbers 
NegativeMale 1050, 1202, 1220, 1304, 1525 
NegativeFemale 1050, 1120, 1201, 1202, 1525 
NeutralMale 1670, 7006, 7010, 7080, 7175 
NeutralFemale 1670, 7004, 7010, 7012, 7175 
PositiveMale 4180, 4210, 4232, 4664, 8501 
PositiveFemale 4505, 4525, 4660, 8001, 8501 

 
Before participating in the study, all participants read and 

signed a consent form approved by the Office of Research 
Protections (ORP) at Penn State. Participants were assigned 
to one of three possible groups (with different accompanying 
treatments): a negative group with a negative image 
treatment, a neutral group with a neutral image treatment, or 
a positive group with positive image treatment. Images 
(consistent with participant sex and group) were presented to 
participants for 17ms after deck selection if they selected 
from one of the bad decks (those that give a negative net 
amount of money) and plain gray images were presented for 
the same amount of time if a card selection was made from 
one of the other two decks. For a full explanation of the 
typical IGT procedure, see (Bechara et al., 2000). 

Results 
As with previous IGT-based studies we split deck selection 
analysis into five blocks, 20 deck selections per block. Score 
was calculated by subtracting the total number of card 
selections from decks A and B (the bad decks) from the total 
number of card selections from decks C and D. 
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Figure 2. Cumulative score (±SEM) for all participants after 

the final block 

 
Participants in the positive image group showed the highest 

score (Figure 2) when averaged across blocks, but all groups 
had a positive score by the final block (Table 2). Scores 
increased for all groups from blocks 1-3 and blocks 4-5, but 
decreased from blocks 3-4. 

 
Table 2. Mean score of participants in all of the blocks by 
group. Standard errors are in presented in the parenthesis 

Group B1 B2 B3 B4 B5 
Negative -4.2 

(1.4) 
0.2  
(1.3) 

1.1 
(1.5) 

-0.2 
(1.3) 

2.7 
(1.4) 

Neutral -3.5 
(1.1) 

-0.3 
(0.9) 

2.4 
(0.8) 

1.5 
(1.0) 

1.8 
(1.1) 

Positive -3.3 
(1.3) 

-0.5 
(1.2) 

3.0 
(1.2) 

2.6 
(1.1) 

4.0 
(1.0) 

 
  
A 3𝑋5 (group by block) mixed factor ANOVA of 

participant score revealed a highly significant effect of block 
(𝐹(4, 	360)	 = 	13.22, 𝑝	 < 	. 0001) on score, however it did 
not reveal a significant group (𝐹(2, 	90)	 = 	0.81, 	𝑝	 = 	. 4) 
or a group:block interaction (𝐹(8, 	360)	 = 	0.40, 	𝑝	 = 	. 9) 
effect.  

When sex is also taken into account, males and females 
show an opposite score distribution across groups (Figure 3). 

 
Figure 3. Cumulative score for male (left) and female (right) 
participants after the final block. 

   
Among male participants, those in the positive group 

showed the highest cumulative score and those in the 
negative group showed the lowest score (the only negative 
among male participants). Conversely, among female 
participants, those in the positive group received the lowest 
score (the only negative among female participants), while 
those in the negative group received the highest scores. 

The decision-making model 
To simulate this task and potentially understand more about 
the processes that mediates behavior during this task (and 
others that show some effects of subliminal affective stimuli), 
we developed a cognitive-affective model that runs within the 
ACT-R/Φ architecture. This model uses simulated eyes and 
hands to perceive the task (e.g., see the decks, cards, rewards, 
and affective images) and provide feedback (e.g., press a key 
to select a card from a deck). To make decisions, the model 
uses both procedural and declarative memory (Figure 4). 
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Figure 4. A high-level diagram of the ACT-R/Φ model 

After the model has made a deck selection and a 
reward/loss is shown, it uses those values to reinforce the 
utility of those production rules recently fired: 

𝑈5 𝑛 = 𝑈5 𝑛 − 1 + 	𝛼 𝑅5 𝑛 − 𝑈5 𝑛 − 1       [1] 

𝑅5 𝑛 = 𝑟< −	 𝑡< − 𝑡5 + log 𝑉𝑎𝑙𝑢𝑒FGGHIJK − 	log	(𝑉𝑎𝑙𝑢𝑒LGMN)     [2] 

𝑣𝑎𝑙 𝑡 = 𝑊QRS ∗ 𝑟𝑒𝑤(𝑡)V - 𝑊WXRQY5Z[ ∗ 𝑙𝑜𝑠𝑠(𝑡)V  [3] 
 

Here, 𝑈5 𝑛 − 1  represents the current utility value, α is a 
learning rate, and 𝑅5 𝑛  is a reward that is determined by 
equation 2. In equation 2 𝑟< represents the reward received 
and 𝑡< − 𝑡5 is the temporal discount that is given to a reward 
so that the length of time between reward onset and a rule 
firing determines how much reward is applied to the utility 
value. 𝑉𝑎𝑙𝑢𝑒FGGHIJK  and 𝑉𝑎𝑙𝑢𝑒LGMN in equation 2  are 
reward offsets that take into account the current affective 
state of the model (see Dancy, 2013) for some description of 
the modules/systems in ACT-R/Φ that control these values. 
Though the SEEKING system can be affected by several 
things in a realistic environment (e.g., the model would see 
an increase in SEEKING activation/value if it were thirsty), 
the limited scope of this model means that the SEEKING and 
FEAR values are practically determined by the emotional 
images flashed after selecting a card from a bad deck; this is 
controlled by the affective-associations module in ACT-R/	Φ 
(which is shown in Figure 4. The affective value for the 
images flashed is derived from equations 4 and 5, which use 
the values for arousal, valence, and dominance from the 
images listed in Table 1 (specific values are available in the 
IAPS manual, Lang et al., 1997). 

𝐹𝐸𝐴𝑅XWabR =
WQZbYWac	d ∗(efg	 XWaR[hRc	d g(iZj5[W[hRc	d))

kf
              [4] 

 
𝑆𝐸𝐸𝐾𝐼𝑁𝐺XWabR =

WQZbYWac	d ∗( XWaR[hRc	d c iZj5[W[hRc	d g	ef)
kf

       [5] 

 
The actual reward (i.e., 𝑟< in equation 2) is determined by a 

function that transforms the gain and loss that results from 
selecting a card from a deck on a given trial, using the 
imaginal/imaginal-action buffers. This function implements 
equation 6 below, which is a slightly modified version of an 
equation discussed by Ahn et al. (2008) and proposed by 
Napoli and Fum (2010) to be used in ACT-R.  

 
𝑣𝑎𝑙 𝑡 = 𝑊QRS ∗ 𝑟𝑒𝑤(𝑡)V - 𝑊WXRQY5Z[ ∗ 𝑙𝑜𝑠𝑠(𝑡)V  [6] 

 
These equations all reinforce production rules, which can 

cause some production rules to be less likely to fire over time 
(those that consistently have a negative reward, and 
consequently a lower utility will decrease in likelihood of 
firing overtime). This selection rule is encapsulated in 
equation 7. 

𝑃 𝑖 = 	 R
st

uv

R
sw

uvw

          [7] 

 
𝑃 𝑖  is the probability of selecting rule i which is 

determined by comparative weight of the rule i as well as any 
procedural noise (represented as :egs in canonical ACT-R).  

The model also uses declarative memory to learn and make 
decisions. It encodes deck-value pairs and these pairs 
ultimately control which decks are selected. At the beginning 
of making a deck selection, the model queries declarative 
memory for deck-value pairs for each of the decks. The 
declarative memory elements with the highest activation 
(governed by equation 8) are selected.  

𝐴5 = 	𝐵5 + 	𝑆5 + 	𝑃5 + 𝜀5          [8] 

𝐵5 = ln 𝑡<gi[
<{e + 	𝛽5          [9] 

Thus, the model uses the majority of the major components 
of the original ACT-R architecture (including perceptual and 
motor systems). 

Model Comparison to Study Results  
The IGT model was run a total of 360 times, 120 for each of 
the negative, neutral, and positive image groups. Half of the 
model runs within each group were male, while the other half 
were female. Thus, this resulted in 60 unique runs of the 
model. Because the model was originally developed as a 
prediction of the processes occurring and those behavioral 
data that result from such processes, sex-based differences 
were not a focus. In the model, the distinction between male 
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and female only comes into play with the affectively valued 
visual stimuli (which nonetheless have very similar values.) 

For all groups the, the model predicted a similar scoring 
trend (positive) from blocks 1 to 3 (Figure 5). Overall the 
negative model seemed to deviate the most from the actual 
observed score by participants across decks.  

 
Figure 5. Comparison of score performance between 
participants and the model for negative, neutral, and positive 
groups 
 
The neutral model predicted the scores for the five blocks 
best followed by the positive and negative models (Table 3). 
 

Table 3. Comparison between model predictions for the 
different groups. 

Model/Group 𝑟} 𝑅𝑀𝑆𝐷 
IGTNegative/Negative .56 3.48 
IGTNeutral/Neutral .94 2.49 
IGTpositive/Positive .81 2.05 
All 0.72 2.74 

 

Discussion and Conclusion 
The model fit best to those data from the participants in the 

neutral group best, though the model did also fit reasonably 
well to those data from the positive group. It would seem that 
there is a key point of change that the model does not exhibit 
(i.e., in block 4). The model continues on the positive trend, 
as exhibited in previous blocks, while participants show a dip 
in performance during this block. Because the model does not 
switch deck selection in the same way participants do (and 
thus, continues on a greedy path), the model tended to 
exhaust decks at a certain point, causing the dip in 
performance seen in the final block.  

The model appears to have underestimated the effects of 
the subliminally presented affective stimuli. While, the 
affective stimuli did have certain subtle (subsymbolic) effects 
through the affective-associations module, those participant 
data showed a much more overt effect on performance. 
What’s more, these behavioral effects seemed to have some 
dependency on participant sex, for which the model had very 
little account. 

Figure 6. Predicted brain areas and main functions by the model/architecture. 
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Though the model did not predict several aspects of these 
presented data, it provides a useful framework for future 
work and related simulation. Indeed, using a system like 
ACT-R/Phi for the simulation also allows one to provide 
early predictions of brain areas involved in related affective 
decisions (Figure 1). This is due to the architectures use of 
ACT-R theory (which has various functional modules that 
have been associated with  certain neural structures, 
Anderson, 2007) and theory from affective neuroscience 
(e.g., Panksepp, 1998; Panksepp & Biven, 2012). The 
predictions from Figure 6 can be further explored in future 
studies. Future plans for this particular model include running 
a ranging parameter sweep on potentially varying parameters 
(e.g., 𝑊QRS and 𝑊WXRQY5Z[) to see if the model can more 
closely fit to these data presented here. 

Existing theory, data, and these data presented here make 
it clear that affective processes can have an overt effect on 
decision-making behavior, even when the affective stimuli 
causing the activation of such processes isn’t overt. It is 
important to understand these effects as they can be useful to 
positively, or negatively, influence our decisions in various 
ways that may fail to reach our awareness. The model and 
mechanisms presented provides a first step towards providing 
a more systematic and unified account of the modulating 
effects of affective stimuli on cognitive behavior. 
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Abstract

Modelling infant-carer attachment relationships is an emerg-
ing field at the intersection of research in Attachment Theory
and computational modelling of emotion. Existing attachment
models vary from very abstract models to simulations of spe-
cific experimental protocols, such as the Strange Situation Pro-
cedure. This paper argues for the benefits in broadening attach-
ment modelling of infants and young children to also include
simulating attachment Q set descriptors. The attachment Q set
(AQS) is a 90 item list of attachment related behaviors used
to assess the balance between attachment and exploratory be-
havior in home and other naturalistic settings. The AQS de-
scriptors provide a broader and more rounded challenge for at-
tachment modelling than other types of systematic attachment
measure because they can be observed in naturalistic contexts
and are less dependent on the specific details of laboratory set-
tings. A computational attachment model is presented from
which a selection of 8 attachment Q set descriptors will be sim-
ulated. Thsee initial descriptors to be simulated are concerned
with the time an infant takes to recover from anxiety. A ‘route
map’ for progress towards capturing all 90 Q sort descriptors
is discussed.
Keywords: Attachment Theory; Attachment Modelling;
Agent-based modelling; Attachment Q sort

Introduction
Attachment Theory describes and explains the nature of emo-
tional bonds which form in close relationships (Cassidy &
Shaver,2016). There are a small but growing number of com-
putational attachment models which have been implemented
as software and robotic simulation. For recent reviews see
(Petters & Waters,2015) and (Petters & Beaudoin,2017). This
paper will illustrate how empirical data in the form of at-
tachment Q set (AQS) descriptors is well suited for the pur-
poses of forming test-cases in scenarios and specification of
requirements for attachment models. Two key contributions
of this paper are that (i) it illustrates different ways that empir-
ical data that can be used for modelling affective phenomena,
and in particular it highlights the constraints and biases for
simulations in this domain; and (ii) it provides an examples
of how an existing simulation has been adapted to model Q
set descriptors.

A short introduction to Attachment Theory
In its early theoretical development, an idea which was im-
portant in distinguishing Attachment Theory from learning
theory is that attachment between an infant and main care-
giver is a rich ‘love’ relationship (Bowlby,1969). This means
that whilst attachment relationships can be tracked by observ-
able behaviour patterns, attachment arises from a complex in-
ternal information processing architecture, termed by Bowlby
the ‘attachment control system’ (ACS) (Bowlby,1969). The
ACS acts to maintain a balance between attachment be-
haviour and exploration. Cues to danger momentarily move

this balance from exploration to attachment. Over longer on-
togenetic timescales, the complex organisation of attachment
behaviour is sensitive to environmental factors. This means
that both normative routines and individual difference pat-
terns of attachment are learnt, with the aid perhaps of some
evolutionary biases in infants’ learning abilities. Individual
differences in attachment are conceptualised as differences
in an individual’s ability to use their attachment figure as a
secure-base. This means that the attachment-exploration bal-
ance for any individual reflects its past history of sensitive and
effective responses by its caregiver in support of exploration
and when the infant is distressed. (Petters,2006a).

Initially in ontogenetic development, the ACS is composed
of relatively simple mechanisms, such as reflexes and fixed
action patterns. However, later in development the ACS
becomes comprised of a diverse range of information pro-
cessing structures and mechanisms, from simple reflexes to
goal corrected mechanisms and processes of planning, de-
liberation about future consequences of possible actions, and
representing aspects of the self and environment in natural
language to facilitate these processes and to communicate
with others (Bowlby,1969;Petters,2006a). In addition to bet-
ter capturing the behavioral complexity and underlying pro-
cesses in play during infant-mother interactions, viewing at-
tachment in control system terms clarifies assessment criteria.
In principle, it is much easier to evaluate whether an attach-
ment system is tracking set goals such as maintaining access
to the carer or regulating affect than to evaluate the “qualities”
of attachment as a dyadic relationship or a social network.
(Waters & Deane,1985).

Whilst Bowlby set out the details of the ACS, Ainsworth
and co-workers initiated the ‘individual difference phase’ of
attachment research by developing the Strange Situation Pro-
cedure (SSP) (Ainsworth, Blehar, Waters, & Wall,1978). The
SSP is conducted in a 4m x 4m room with chairs for two
adults, toys for the infant to explore, and one-way glass for
observation and video recording. The assessment is divided
into 8 three minute episodes. At two critical points, the carer
leaves the infant in the room for three minutes (once with a
responsive but unfamiliar adult and once all alone). In early
research, it was thought that response to these separation
episodes (esp. crying) would be the best predictor of prior
experience with the carer and of later adjustment. However,
smooth adaptive responses to reunion (as opposed to anger or
avoidance) soon proved to be much more revealing of home
environment. The context changes that occur in the transi-
tions between the eight episodes, and the infant’s responses
to these transitions provide a valuable data-set for contempo-
rary researchers interested in designing attachment behaviour
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simulations (Petters,2006a,2006b).
Normative behaviour patterns across episodes highlight the

infant’s sensitivity to context that would be difficult to ex-
plain in terms of traits or operant control and justify the use
of a control systems approach (e.g., more play, different kinds
of signalling, less proximity seeking when carer is present) .
Although the SSP assesses rather complex behavior, it does
so in a restricted context and time frame. Therefore, it has
been important to validate SSP based assessments against ob-
servations in more naturalistic settings and over longer time
intervals. Ainsworth undertook this using detailed etholog-
ical observations, For each dyad, infant and maternal be-
haviour observed in home for up to 16 hours toward the end
of the infant’s first year (Ainsworth et al.,1978). The cre-
ation of the SSP triggered the development of a huge number
of diverse measurement tools in attachment research, rang-
ing from trait questionnaire measures similar to those used
in personality research to the AQS methodology, which can
be compared with the ethograms used in ethological research.
More recently, Waters and Deane developed a more econom-
ical method for observing and quantifying infant-mother in-
teractions. Their AQS descriptors cover the full range of at-
tachment and exploratory behaviors that Ainworth recorded.
However, rather than generating narrative records of the ob-
servations, the items are scored and compared to a template
that describes skillful, well-organized use of the carer as a
secure base (Waters & Deane,1985).

Different ways to model attachment
Attachment phenomena have been modelled in a very
abstract fashion using Artificial Neural Nets (ANNs)
(Fraley,2007;Edalat & Mancinelli,2013). In these attach-
ment models the ANN can be viewed as an extremely ab-
stract representation of an individual. The ‘experiences’ and
‘behaviour’ of the individuals in these simulations are also
extremely abstract, being constituted of data that are an in-
dependent sequence of discrete training exemplar and re-
sponse pairs. The main result (finding) of these simulations
matches the high level of abstraction that these models have
been created at. This is that in these artificial neural net-
work simulations early prototypes are not over-written, and
so show greater continuity, when new relationship experi-
ences are inconsistent. But consistent presentation of new
prototypes does result in gradual change (Fraley,2007;Edalat
& Mancinelli,2013).

Agent-based models have also simulated the SSP (Petters
& Waters,2015) and infant secure-base behaviour. These
models are less abstract then the models based on neural nets.
The main result (finding) from these simulations is that within
a design space for attachment architectures, some attachment
architectures show system properties like sensitivity to initial
conditions (c.f. the butterfly effect) and saddle points in de-
velopmental trajectories (Petters,2006a,2006b). So where the
neural networks learn item by item in ‘batch jobs’, and pro-
vide a result in terms of how many new learning experiences
it takes to undo existing learning, the agent-based models ex-

ist in online dynamically changing virtual environments and
provide results consonant with this type of dynamic simula-
tion. In the agent based modelling case, inputs to an agent at
any given time are contingent on what occurred the moment
before. This means that these simulations help explain find-
ings in terms of repeated contingent interactions that result in
positive feedback driving the system away from its starting
conditions towards extreme levels of ‘secure’ or ’insecure’
interactions.

In summary, whereas the ANN results describe change in
an internal representation acted upon by an independent se-
quence of ‘offline’ discrete training exemplars, agent-based
modelling (ABM) results follow the changing trajectory for
an agent in a broader system as that agent is acted upon and in
turn influences the broader system in ‘online’ fashion. These
findings illustrate a key principle in the art and science of cog-
nitive modelling is the importance in finding the right level of
abstraction for a simulation. This paper is concerned with dis-
cussing the benefits and drawbacks for attachment modelling
in taking various approaches to deciding upon an abstraction
level for computational attachment models. The paper intro-
duces the AQS as a source of empirical constraints and re-
quirements specifications not used before in attachment mod-
elling. It will illustrate how modelling AQS data will provide
some specific benefits over simulating other sources of in-
formation in the form of trait measures, frequency and time
sampling data, and the SSP.

The nature of empirical data constrains the
nature of the simulation

The importance of structural fidelity
Gaining structural fidelity is an important objective when
constructing psychological measurement tools, such as per-
sonality scales and related questionnaires (Simms & Wat-
son,2010). This is because any behavioural measure should
provide data congruent with the type of construct it is de-
signed to assess. There are two aspects to structural fidelity
(Simms & Watson,2010). The first is a structural compo-
nent of construct validity which requires that structural re-
lations between the chosen test items in the measurement
tool parallel structural relations for other manifestations of
the construct in question, which did not get chosen to be test
items. So this is a requirement that test items are represen-
tative of the possible manifestations of the construct in terms
of their structural relations (Simms & Watson,2010). This
aspect of test item choice is clearly relevant to the computa-
tional modeller. To produce a model based on the underlying
phenomenon rather than arbitrary aspects of observed data
a modeller should not abstract and simulate test items that
systematically differ from other manifestations of the con-
struct they intend to model. The second aspect of structural
fidelity regards the assumptions underlying the chosen test
set matching the theoretical model underlying the construct
(Simms & Watson,2010). Loevinger (1957 cited in (Clark &
Watson,1995)) was the first researcher to highlight these is-
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sues, and contrasted scales and tools which were based on
a “deeper knowledge of psychological theory” (Loevinger
1957, p. 641, cited in (Clark & Watson,1995)) with tools
based on an atheoretic “answer-based” technology (Clark &
Watson,1995). Clearly, for the computational modeller this
issue is critical. When possible, computational modellers
should draw upon empirical data that align with appropriate
underlying theory.

Limitations of trait rating, frequency counts and
time sampling behavioural measures for attachment
modelling
Trait measures are flexible and economical, take context into
account, and demonstrate coherence over time (Waters &
Deane,1985). However, they are not suited to assessing non-
quantitative data and they score low in structural fidelity be-
cause attachment is not a trait. Waters and Deane note:
“trait language should only be used to summarise behaviour
- never as a substitute; never as an explanation” ((Waters
& Deane,1985), p.44). Waters and Deane suggest that trait
rating are coercive and conservative in forcing researchers to
view constructs in terms of pre-existing scales, and working
against introduction of new scales or measures during the pro-
cess of measurement (Waters & Deane,1985). It is also dif-
ficult to disentangle affect and cognition in trait rating data
(Waters & Deane,1985). Observational data in the form of
frequency counts and time sampling retain much more be-
havioural detail than trait rating methods. They also have
good structural fidelity. However, their expense and difficulty
to use mean that often only small numbers of behavioural cat-
egories are assessed in a single study. In addition, particu-
larly interesting behaviours may occur at very low frequen-
cies (Waters & Deane,1985). This means that they are a very
good way of getting very detailed data on behaviours of spe-
cific interest if those behaviours occur relatively frequently.
For practical reasons of resources and time, what these meth-
ods is not so good for is gaining a comprehensive overview
of an entire behaviour domain that possessed many different
salient behaviour types (Waters & Deane,1985).

Limitations of the SSP as a source for attachment
modelling
The SSP (Ainsworth et al.,1978) involves a set of scoring pro-
tocols that includes behaviour coding, frequency and percent-
age measures. All these measures were developed to provide
insight in to the underlying ACS. This is done partly by in-
cluding separation and reunion episodes which are mildly to
moderately stressful as a way of activating the ACS in a con-
trolled manner. Because the procedure is designed specifi-
cally to uncover the state of an infant’s ACS, the SSP affords
very high structural fidelity. However, the behaviours pro-
duced in the SSP do not correlate directly to behaviours in
naturalistic settings like the home environment. For exam-
ple, crying rate in the SSP does not predict the rate of these
behaviours at home. Rather, the behaviours produced in the
SSP are used to infer the state of the ACS, and an ACS in

this state will produce different behaviour patterns depending
on context. Other limitations of the SSP for psychological
research include the narrow age range it can be used (21-18
months), strong carry over effects (infants recognise the con-
text if it is repeated soon after), the expense and difficulty of
administration, and it does not capture developmental change
well (Waters & Deane,1985). For the attachment modeller, it
is also too narrow in measures used and number of contexts
it describes.

Limitations of modelling in a ‘method-bound’
research domain
A further limitation for attachment modelling related to at-
tachment measures arising from the large variety of attach-
ment measures currently available. It might be imagined that
having numerous attachment measures to choose from would
help the attachment modeller. However, the current situation
has given rise to what Fonagy terms the ‘method-bound’ na-
ture of Attachment Theory:

“Attachment theory [...] has been in some ways
method-bound over the past 15 years. Its scope was
determined less by what fell within the domain de-
fined by relationship phenomena involving a caretaking-
dependent dyad and more by the range of groups and be-
haviors to which the preferred mode of observation, the
strange situation, the adult attachment interview, and so
forth, could be productively applied.”((Fonagy,1999), p.
5)

There is therefore drawback in attempting to model be-
haviour in a domain which is ‘method-bound’. If the meth-
ods leave gaps in empirical data coverage, the gaps will not
get modelled. So a researcher interested in behaviour will
need to consider carefully how to get a representative sample
of behaviour in this kind of domain. The next section de-
scribes the AQS, which overcomes the limitations for attach-
ment modelling of behaviours described as traits, frequency
counts, time samples and SSP patterns. It also allows strong
structural fidelity between observable behaviours and inter-
nal processes and provides more comprehensive coverage of
attachment any other single measure.

Overview of Attachment Q Set Behavioural
Descriptors

Q sort methodology can be applied to research in any given
area of behavioural science (Waters & Deane,1985). First, it
involves developing a set of descriptive items. These should
ideally be extensive enough to be an overview of the entire be-
havioural domain of interest. For example, Waters and Deane
spent two years developing a 100 item Q set for infant attach-
ment. They reviewed relevant literature; developed a list of
relevant constructs (security, dependency, detachment, self-
efficacy, aspects of object orientation, communication skills,
predominant mood, response to physical comforting, fearful-
ness, anger and trust); rated infants and toddlers on these
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variables and then specified the behaviour that led to or was
congruent with these ratings (Waters & Deane,1985). This is
important because it provides an emphasis on simulating or-
dinary as opposed to traumatic experiences when attempting
to model the development of information processing architec-
tures for attachment. When ‘ordinary’ architecture develop-
ment can be modelled, trauma modelling can follow.

Each AQS item refers to a particular behaviour patterns in a
specific context. As Waters and Deane note, because the AQS
“covers a broad range of secure-base and exploratory behav-
ior, affective response, social-referencing and other aspects
of social cognition [...] it can be construed as an overview
of the entire domain of attachment relevant behavior, as cur-
rently understood within an ethological/control systems per-
spective” ((Waters & Deane,1985), p. 7. This means that the
AQS captures a more comprehensive description of attach-
ment relevant behaviour that other behavioural measures that
might be used in computational modelling.

What is of particular interest for attachment modelling is
how the AQS descriptors were initially constructed. Waters
and Deane describe four stages in the initial development of
the attachment Q-set (Waters & Deane,1985). These four
stages involve procedures for developing sets of items which
empirical psychologists use when observing behaviour, pro-
cessing and analysing behaviour, and ultimately producing a
classification for the individual observed. However, compu-
tational modellers can use these descriptions to construct rep-
resentative behavioural scenarios from which to direct model
design and simulation implementation, and guide model eval-
uation and validation.

The first stage of Q-set production is of most interest to
computational modellers because it involves procedures for
developing sets of items. Developing a Q set requires care-
ful examination of extensive observational data. Even when
initial descriptor sets are produced they need to be trialled
to weed out highly correlated descriptor pairs (Waters &
Deane,1985). It also requires close attention to detail, focus-
ing on distinctions and ambiguities that may not be apparent
in measurement tools at a higher abstraction level (Waters &
Deane,1985). One of the major advantages in this methodol-
ogy for empirical psychologists is that observers new to the
domain will evaluate the same context as the experts who de-
signed and calibrated the AQS (Waters & Deane,1985). This
is precisely the property of a measurement tool that computa-
tional modellers require: providing broad and comprehensive
coverage but also focused on behaviour of interest, filtering
out irrelevant behaviours from analysis, and a level of clarity
in actions and context that a novice can understand (and learn
from). Another major advantage of the AQS methodology
is it gives an helpfully strong focus on the role of context,
and effectively defines behaviours as “acts plus context” as
context is integral to each Q set item (Vaughn, Waters and
Teti,forthcoming).

The second stage of a Q-sort methodology involves then
assigning scores to descriptors when assessing individual

study participants, depending how well the participants
matches the behaviour. Then the third stage of a Q-sort
methodology involves data reduction and analysis and there
are a wide variety of procedures for doing this (Waters &
Deane,1985). The Q-set methodology allows an infant or
child’s behaviour to be observed and measured so that it gives
a set of scores which can be correlated against a hypothetical
‘most secure baby’ Q-sort. So a very secure Q set would give
a high correlation (around r = 0.6 of a theoretical maximum
of 1). Very insecure infants give correlations around r = 0,
because insecure behaviour does not involve doing the ex-
act opposite of secure behaviour. Details of how the Attach-
ment Q sort procedure is actually used in empirical research
by psychologists to assess infants is beyond the scope of this
attachment modelling paper but described in more detail by
Waters and Deane (Waters & Deane,1985), with the full set
of Q sort items listed by Waters (Waters,1987).

Unlike other measurement tools, the AQS provides an
abstract generalised template for computational attachment
modellers. As Vaughn, Water and Teti note, it is similar
to an ‘ethogram’, because it is “rooted in observation and
attempts to catalogue the full suite of behaviors associated
with a particular behavioral system”.(Vaughn, Waters and
Teti,forthcoming, p.14).

Modelling results
Modelling of Q set descriptors has been undertaken using an
existing agent-based model of the SSP as a point of depar-
ture (Petters,2006a,2006b). Figure 1 shows a hybrid infant
architecture with reactive components and a simple delib-
erative subsystem. This architecture simulates the SSP by
‘experiencing’ the pattern of caregiving in a home ‘training’
stage and then producing typical SSP behavioural patterns in
a ‘test’ stage. It has been used as the basis for implementing
AQS descriptors by being augmented with further perceptual,
memory and action mechanisms.

The most recent version of the AQS has 90 behaviour
descriptors (Waters,1987). Waters and Deane present these
items as a single list. The first task that has been undertaken
in this current research is to analyse these descriptors to as-
sess the best order to place them in a ‘route map’ for eventu-
ally capturing all Q sort descriptors in a single implemented
simulation. So for this current modelling effort, the AQS de-
scriptor list has been analysed into three main sets of descrip-
tors: those that could be modelled by the existing agent-based
architecture with manageable extensions to that architecture
(20 items); those that were well beyond the capabilities of the
existing implemented agent architecture and would require a
significantly more sophisticated architecture to be simulated
(35 items); and ‘filler’ items not linked to attachment phe-
nomena and which were added to the Q set for pragmatic rea-
sons to make the AQS sorting procedure run more smoothly
(35 items) (Waters & Deane,1985). There were two main rea-
sons that items were assessed as being significantly beyond
the capabilities of the existing simulation: that the descriptor
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Figure 1: A hybrid attachment architecture with reactive, de-
liberative and meta-management subsystems. This archiec-
ture has been extended to store in infant agent memory the de-
tails of episodes when it interacts with carer agents, with the
responsiveness and sensitivity of the interaction stored along
with other details of context

required a more sophisticated perception and understanding
of others than is currently implemented in existing attach-
ment simulations (for example, AQS descriptor 42: ‘Child
recognizes when mother is upset. Becomes quiet or upset
himself. Tries to comfort her. Asks what is wrong, etc.’); and
that the descriptor requires a more complicated model of the
simulated world than is currently implemented (for example,
AQS descriptor 53: ‘Child puts his arms around mother or
puts his hand on her shoulder when she picks him up’. Filler
items included AQS descriptors such as number 89: ‘Childs
facial expressions are strong and clear when he is playing
with something’.

The 20 items in the set of AQS descriptors which were as-
sessed as being able to implemented with an extension of the
existing agent-based model have been categorised into 7 sub-
sets focusing upon: affective communication (2 items); pre-
disposition to cry or be demanding (2 items); the interplay
of exploration, anxiety and relief (2 items); aspects of phys-
ical need (3 items); how sensation and perception operate in
the attachment domain (2 items); time to become anxious (2
items); and time to recover from anxiety (8 items). Figure
2 presents the eight AQS items concerned with the subset
of descriptors concerned with ‘time to recover from anxi-
ety’. The initial modelling in this AQS simulation project
has concentrated on capturing these eight descriptors. This
has been done by implemented extra percptual, memory and
action mechanisms to support simulation of infant expecta-
tions about the immediate future likely responses of the carer
agent.

The existing agent-based model of the SSP (in figure 1) al-
ready simulates individual differences in the behavioural pat-
terns that result when infant agents return to the proximity
of their carer agent after a separation (Petters,2006a,2006b).
This occurs because the existing agent-based model possesses

‘behaviours’ for attachment proximity, exploration, social
need, and physical need. These all operate independently
and in parallel in proposing new active action goals for the
agent. The action selection mechanism is a ‘winner-take-all’
mechanism which selects the candidate goal with the highest
activation. The ‘behaviour’ subsystem for attachment anx-
iety goal is activated when the distance between the infant
agent and carer agent is beyond a parameter termed the ‘safe-
range’. This safe-range parameter is learned from the results
of all previous episodes when the infant agent has attachment
anxiety as its active ‘behaviour’ goal. If the infant agent has
experienced a history of prompt and sensitive responses from
its carer agent it will have a large ‘safe-range’. This means
that the carer agent can move further away before the infant
agent’s attachment anxiety ‘behaviour’ goal starts to become
activated. If the infant agent has experienced a history of
tardy and insensitive responses to its requests for proximity
and attention then it will have a small ‘safe-range’. This not
only means that attachment anxiety will be experienced more
often, but that anxiety will take longer to drop back to a nor-
mal value when reunions occur. However, the ’safe-range’
parameter is a very economical record of previous interac-
tions because the results of the quality of interaction in all
different contexts are collapsed into a single numerical value.
What the newly implemented ‘AQS’ extensions to the exist-
ing simulations involve is the recording of much more con-
text for each individual episode where attachment anxiety be-
comes the active goal and the infant agent records carer agent
responsiveness and sensitivity. In the ‘AQS’ extension archi-
tecture when the infant agent experiences an episode of active
attachment anxiety and signals and moves to reduce its anx-
iety level the context at initiation and conclusion of the goal
is recorded. This context includes external measures, such as
the agents and objects present in sensory data, and also in-
ternal context, such as relative activations for inactive goals,
such as physical and social need. This means that when a
new episode of anxiety is experienced this more detailed and
specific ‘episodic memory’ is available to influence responses
in a ‘recovering from anxiety’ time period. This mechanism
will therefore support simulating the expectations of carer re-
sponse apparent in the AQS ‘time to recover from anxiety’
descriptor subset. The production of the AQS simulation ex-
tension is a work-in-progress with the aim of ultimately cap-
turing all 90 AQS behavioural descriptors. Mechanisms for
encoding very simple episodic memories for anxiety episodes
have been implemented. Detailed mini-simulations of AQS
descriptor items 2, 13 and 33 from the ‘time to recover from
anxiety’ subset have been completed with progress ongoing
for the AQS descriptor items 34, 43, 70, 71, and 78.

Conclusion

Evaluation and validation of attachment models is less well
defined than the quantitative evaluation and validation which
can occur with some cognitive models that involve simulating
quantitative data like reaction times or accuracy measures.
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AQS Descriptor
number

2 When child returns to mother after playing,
he is sometimes fussy for no clear reason

13 When the child is upset by mother’s leaving, he
continues to cry or even gets angry after she
is gone.

33 Child sometimes signals mother (or gives the
impression) that he wants to be put down,
and then fusses or wants to be picked right
back up.

34 When child is upset about mother leaving him,
he sits right where he is and cries. Doesn’t
go after her.

43 Child stays closer to mother or returns to her more
often than the simple task of keeping track of
her requires.

70 Child quickly greets his mother with a big smile
when she enters the room. (Shows her a toy,
gestures, or says “Hi, Mommy”).

71 If held in mother’s arms, child stops crying and
quickly recovers after being frightened or upset.

78 When something upsets the child, he stays
where he is and cries.

Figure 2: A set of eight AQS descriptors related to descrip-
tions of the time an infant takes to recover from anxiety have
been grouped together to act as a starting point for the AQS
modelling project. (AQS descriptor numbers relate to the or-
dering given in (Waters,1987)).

This paper has demonstrated the benefit of using AQS de-
scriptors in attachment modelling because of their structural
fidelity, comprehensive coverage as attachment ‘ethograms’,
and ready incorporation in modelling scenarios. In compar-
ison to the AQS item pool, past modelling research has fo-
cused on a narrower, and arguably less theoretically interest-
ing range of behaviors and processes. Thus, this paper has
examined the AQS item pool with an eye toward identify-
ing content that could be incorporated into existing models
and architectures. It has also highlighted content that seems
too complex to be easily incorporated and suggested some
of the problems that would have to be solved before doing
so. New mechanisms have been described to simulate how
infants retreat to the caregiver when distressed, and establish
and maintain contact until comfortable enough to resume ex-
ploration. The next stage is to simulate how infants explore
away from the caregiver, evaluate and maintain caregiver ac-
cess and availability, and seek information or assistance while
exploring or manipulating objects or locations.
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Abstract 
 
Although meditation and mindfulness practices are widely 
discussed in the scientific literature, there is little formal theory 
about the cognitive mechanisms that comprise it. Here we begin to 
develop such a theory by creating a computational cognitive model 
of a particular type of meditation: focused attention meditation. 
This model was created within Prims, a cognitive architecture 
similar to and based on ACT-R, which enables us to make 
predictions about the cognitive tasks that meditation experience 
may affect. We implemented a model based on an extensive 
literature review of how the meditation experience unfolds over 
time. We then subjected the Prims model to a session of the 
Sustained Reaction to Response Task, a task typically used to study 
sustained attention, a faculty that may be trained with meditation 
practice. Analyses revealed that the model was significantly more 
sensitive to detecting targets and non-targets after the meditation 
practice than before. These results agree qualitatively with 
empirical findings of a longitudinal study conducted in 2010. 
These results suggest that our approach to modeling meditation 
and its effects of cognition is feasible. 

 
Keywords: Focused attention meditation, mindfulness, sustained 
attention, SART, PRIMS, transfer 

Introduction 
Meditation consists of a set of mental exercises that have 
been developed and practiced reaching as far back as 4000 
years (Riley, 2004). In the last 50 years there has been more 
and more interest in the effects of the various meditation 
styles on cognition and emotion. The spectrum of 
empirically examined effects has grown quite vast, with 
some being reasonably well-replicated and of medium to 
large effects while others have been inconsistent (Khoury, 
Sharma, Rush, & Fournier, 2015; Sedlmeier et al., 2012). 
However, there are no comprehensive computational 
frameworks of meditation and its effect on cognition (e.g., 
Vago & Silbersweig, 2012).  

Meditation is often conceptualized as a family of 
attentional and emotional regulation exercises, the former 
being the aspect that virtually all styles share to some 
degree. However, it needs to be stressed that meditation 
techniques differ strongly. They originate from distinctive 
cultures and religions (Buddhism, Hinduism, Taoism, 
Sufism, Christian Centering Prayer, etc.) as well as secular 
settings (acceptance and commitment therapy, mindfulness-

based stress reduction, mindfulness-based cognitive therapy; 
Hayes, 2004; Kabat-Zinn, 1990; Teasdale et al., 2000). They 
can differ greatly concerning the emphasis of the mental 
faculties used (attention, feeling, reasoning, visualization, 
etc.), the objects they are focused on (thoughts, images, 
concepts, internal energy, breath, love, God, etc.; Shear, 
2006) and lastly with what aim they are employed 
(relaxation, heightened sense of well-being; attentional 
balance, insight, etc.; Lutz, Slagter, Dunne, & Davidson, 
2008; Wallace, 1999). That being said, the common 
typology to categorize this vast family of practices is based 
on what meditators are purportedly doing from a first-
person perspective: ‘Focused Attention’ (FA) meditation 
and ‘Open Monitoring’ (OM) meditation (Lutz et al., 2008). 
In OM practices – in contrast to FA meditation – there is no 
clear focus of attention and the task is to be continuously 
aware of phenomena appearing and to return to this 
monitoring when one gets caught up with the content.  

In this paper, we begin to develop a computational theory 
of meditation practices by creating a cognitive model of 
focused attention (FA) meditation, as this kind of meditation 
is most amenable to computational modeling. In this 
practice, the meditator brings her/his attention to an object 
such as the breath, and then monitors with non-judgmental 
attention whether attention is still there. As soon as the 
meditator realizes attention has wandered, s/he brings the 
attention back to the object of focus, minimizing any further 
mental elaboration. 

The particular type of FA meditation that was practiced 
by the subjects relevant for this article was so-called 
Samatha meditation (MacLean et al., 2010). According to 
Wallace (1999), the meditation instructor of the retreat, the 
main goal of this practice is to cultivate a stability and 
vividness concerning attention. In order to pursue this 
cultivation there are two crucial faculties that must be 
refined in turn: mindfulness and introspection, mindfulness 
being the primary faculty. In the setting of Samatha, 
mindfulness may be reduced to the aspects of recollection 
and steadiness: the ability to remember to sustain the 
attention on a given object and to remember to return when 
there has been a distraction nevertheless (Wallace, 1999). 
Introspection, on the other hand, is the faculty to monitor 
the meditation process, a type of meta-cognition that is 
tuned to the detection of increases in phenomenological 
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excitation or laxity. When these two faculties fail, mind 
wandering may take over: an unintended shift of focus to a 
sensory or mental event, which then leads to habitual 
affective responding, which in turn triggers related mental 
events such as episodic or procedural memories, that then 
lead to more habitual affective responses and so on (Vago & 
Silbersweig, 2012).  

The meditation model was constrained in two ways: (i) 
qualitatively through taking testimonials and existing 
theories on meditation into account and (ii) quantitatively by 
taking existing data into account. Because meditation itself 
produces virtually no behavioral output to which one could 
compare a model output, our model was constrained 
indirectly by having it predict transfer to a similar task that 
does produce output. This transfer was compared to 
empirical data of a three month FA meditation retreat 
(MacLean et al., 2010). The specific transfer was from 
multiple FA meditation sessions to a Sustained Attention to 
Response Task (SART; Robertson, Manly, Andrade, 
Baddeley, & Yiend, 1997). The similarity between the 
modeled and actual transfer effect is then an indirect 
measure for the fit of the meditation model to the actual 
meditation process. The rationale here is that an adequate 
model of meditation would be expected to make reasonably 
good predictions about transfer to other tasks. 

The SART is a useful task to examine the effects of 
meditation practice, because both meditation and this task 
involve maintaining attention over a long period. In the 
SART, typically performance is quite good at first but 
quickly decreases. This vigilance decrement is characterized 
by a reduction in speed and accuracy as well as reductions 
in perceptual sensitivity and increases in response bias 
(Warm, 1980). According to Lutz et al. (2008) there are 
significant parallels between conceptualizations of sustained 
attention in cognitive sciences and processes involved in FA 
meditation. Moreover, there is consensus between Western 
scientists and Buddhist scholars that both processes require 
“skills involved in monitoring the focus of attention and 
detecting distraction, disengaging attention from the source 
of distraction, and (re)directing and engaging attention to 
the intended object” (Lutz et al., 2008, p. 2). 

Computational models for the SART already exist 
(Gunzelmann, Gross, Gluck, & Dinges, 2009; van Vugt, 
Taatgen, Sackur, & Bastian, 2015). The SART model 
created for this paper was inspired by the model by van 
Vugt et al. (2015), which–contrary to other models that 
leave mind-wandering abstract–models mind-wandering 
explicitly as a cognitive process of memory retrieval. The 
advantage of modeling mind-wandering explicitly is that it 
allows you to model the actual thoughts that are mind-
wandered about, and the change in attitude towards these 
thoughts that is so characteristic of meditation practice 
(Desbordes et al., 2015; Vago & Silbersweig, 2012). Even 
though there are several comprehensive theoretical 
frameworks of meditation (e.g., Vago & Silbersweig, 2012), 
to the best of our knowledge there are not yet any 

computational models of meditation, let alone FA 
meditation. 

We implemented our model in the Prims architecture 
(Primitive Information Processing Elements; Taatgen, 
2013). It is a recent extension of the well-established 
Adaptive Control of Thought – Rational, or ACT-R 
(Adaptive Control of Thought-Rational; Anderson & 
Lebiere, 2012) and has been developed to be able to explain 
transfer between different cognitive tasks, which is crucial 
for our project. As in ACT-R, cognitive processing is 
distributed across specialized modules, which are implied 
by some theories of cognition (Anderson & Lebiere, 2012): 
• A goal module, which stores active goals and applies 

their influence. 
• An input module, which models perception (e.g., 

vision) 
• An output module, which model outward actions  (e.g., 

button presses) 
• A retrieval module, which models declarative memory 

and memory retrieval processes. 
• A working memory module, which stores information 

that is immediately accessible and intermediate steps in 
calculations 

Cognitive processing itself takes place in cycles of applying 
if-then-rules. These rules are called operators in Prims (and 
productions in ACT-R). In every cycle, the information in 
the buffers of the modules is compared to the conditions of 
the operators. If multiple operators have conditions that fit 
the information in the system, a competition between them 
occurs and the operator with the highest activity – which 
depends among other factors on a baseline activity plus a 
random noise variable – is chosen to be executed.  

Method 
When the model is run for several rounds it simulates 

roughly four processes that a meditator cycles through: 
1. Remembering (or keeping in mind) what is supposed to 

be done again and again: In this case, this is the task of 
being aware of the breath. 

2. Being aware of breath sensations, which is simulated as 
copying the perception into working memory. 

3. Remembering something else and wandering off into 
daydreams, worries, etc. 

4. Remembering to come back to the task when one has 
wandered off. 

The model does this by assuming two competing goals1 – 
focusing on the breath (the focus goal) and mind wandering 
(the wander goal) – which each have operators associated 
with them (van Vugt et al., 2015). Which operator wins 
depends on three factors in this model: the baseline 
activation of the operator, the random activation added and 
the spreading activation from the goal it is associated with. 
Goals can furthermore be activated or deactivated by 
operator actions (a unique feature of Prims that ACT-R does 

                                                             
1 These goals – especially the goal to mind wander – are not 

necessarily explicit/conscious to the individual. 
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not have). In the latter case, their activation is automatically 
0. This does not mean that operators associated with an 
inactive goal cannot win a competition; it just makes it a lot 
less likely. 

As can be seen in Figure 1, all of the operators are 
triggered by the retrieval of the last cycle and as can be seen 
in Table 1, there are three kinds of memory chunks. 30 of 
them are meant to model mind-wandering contents (not 
necessarily single memories but rather representative 
instances of narratives or overarching themes). The 31st is 
the memory of the meta-task, which is the memory of 
refreshing the goal itself before checking what the low-level 
task at hand is. The 32nd is the memory of the low-level 
task, which entails feeling the breath. 

 
Table 1: The three types of memories in the declarative 

memory of the meditation model and their slots. 
 
Meta-task	(n=1)	 Task	(n=1)	 Mind-wandering	

(n=30)	
Memory	
Intention	
Meta-task	
Focus	

Memory	
Intention	
Task	
Breath	

Memory	
Mind-wandering	
Memory-4*	
Approach*	

Note: * These are examples. The memory slot ranges 
from ‘Memory-1’ to ‘Memory-30’ and the valence slot can 
contain ‘Approach’, ‘Avoid’ or ‘Stay’. 

 
A mind-wandering memory could have the following slot 

contents: Memory, Mind-wandering, Memory-17, Avoid. 
The first slot indicates that this chunk is a memory, which is 
a very general label to allow for general requests. The 
second slot distinguishes the mind-wandering chunks from 

the memories of intentions, while the third slot is a 
placeholder for a specific memory topic (e.g. ‘Memory-21’ 
might be a future-oriented and attractive topic – going on 
vacation). Finally, the fourth slot contains the valence or 
motivational connotation. Both intention memories have 
lower activations to begin with, 1.00 as opposed to the 
mind-wandering chunk’s average activation of 3.07. This 
models the intention memories being less salient and 
engaging (at first) than the mind-wandering memories.  

The model starts off with the focus goal activated and 
‘Breath’ in the input buffer (which remains there). As 
nothing has been retrieved, the retrieval operators of both 
goals will compete. At this point the focus operator will 
usually win, as the wander goal is not active yet. If it does, it 
requests a general memory and since it has associations with 
the task and meta-task memories, they have a better chance 
than the daydream memories of being recalled (if they have 
the same baseline activation anyway). If the task memory is 
remembered this directly triggers being aware of the breath, 
however if the meta-task memory is recalled this first 
triggers the refresh-focus-operator. This activates the focus 
goal if it was inactive or reinforcing it if it was already 
active. Next the opposing goal is deactivated if it is active 
and the concrete task at hand is requested, modeling a meta-
cognitive process that consist of reinforcing the goal to 
focus and remembering the task to focus on. After feeling 
the breath nothing is retrieved and the retrieval operators 
once again are triggered. If the wander operator wins it will 
initiate a similar process as outlined for the focus goal, 
thereby reinforcing the wander goal. Once a goal has been 
activated its operators tends to go into a stable loop. 
However, as can be seen in figure 1 there are multiple 
interception points to interrupt this. 

The model of sustained attention simulates the 

Figure 1: Meditation 
model. Blue objects are 
related to the focus goal, 
yellow ones are related to 
the wander goal. The boxes 
are operators, while the 
small circles are memories 
that are retrieved due to a 
request by an operator. ‘T’ 
stands for task, ‘M’ stands 
for meta-task, ‘D’ stands 
for daydream. The arrows 
represent possible 
transitions. Thick black 
arrows represent high 
probability, while thin gray 
arrows indicate lower 
probability. The 
represented probabilities 
always signify the chances 
if both goals were active 
and the memories had 
similar baseline activations. 
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==>
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daydream
2. Activate/reinforce 
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memory
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==>
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==>
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performance of the meditators in a SART that the 
participants of the meditation retreat performed (MacLean et 
al., 2010). It consists of frequent non-targets (long lines, 
with 90% probability) and rare targets (short lines, with 
10% probability). The screen switched between the display 
of a mask (1.55-2.15s) and the display of a stimulus (0.15s). 
There was a practice block of 120 trials and 4 contiguous 
test blocks of 120 trials each, which lasted for about 18min. 
The main measure was A’ (Stanislaw & Todorov, 1999), a 
measure of sensitivity combining hit rates and false alarms. 

The model (Figure 2) is made up of operators for 
modeling the mind wandering as well as operators for 
modeling the execution of the SART task. The operators for 
mind wandering are almost identical to their respective 
copies from the meditation model. In a sense, the model 
consists of SART operators (identifying the stimulus, 
pressing, etc.) and a modification of the meditation model 
missing the primary and secondary focus operators.  

 

 
Figure 2: Model of the SART after transfer. ‘T’ stands for 
task, ‘M’ stands for meta-task and ‘D’ stands for daydream. 
The red objects are the transferred operators and the meta-
task memory. The green memories and transition lines 
appear in the diagram as a consequence of this transfer. 
 

The transfer consisted of copying the meta-task memory 
and two meditation model operators into the SART model, 
transferring the following processes: Reinforcing/activating 
the focus goal, deactivating the wander goal, reinforcing the 
focus related memories and the process of remembering the 
task at hand when mind wandering. Importantly, the low-
level task and its memory differed from their counterparts in 
the meditation model: in the SART the low-level task was to 

check the stimulus-response-mapping in case a stimulus 
appeared. 

Results 
Prims has a vast spectrum of parameters, most of which 

influence the performance of the models. A majority of 
them were kept at the default level, while some were 
adjusted to allow for both models to perform at least 
somewhat realistically. Specifically, the activation noise 
was set to 0.4 (default is 0.1), which allowed for slower 
transitions, more interference and shorter loops. The amount 
of goal buffer spreading activation was set to 0.75 (default 
is 1), which decreases the impact the goal 
activation/deactivation has, with similar effects as the 
increased activation noise parameter. The amount of 
working memory buffer spreading activation was set to 0.3 
(default is 0), which allows for association between 
daydreams during mind wandering. The latency factor was 
set to 0.15 (default is 0.2) to make the SART model faster in 
responding to the stimulus. The learning parameter for 
production compilation was set to 0.2 (default 0.1) to allow 
the SART model to assemble the prims faster in the training 
phase. 

The meditation model was tested for a simulated 18 
hours at which point it seemed to have reached a dynamic 
equilibrium (representing the process of learning to stay 
focused on the breath). The analyses reported here pertain to 
only one run, as there was very little variation between the 
runs. As can be seen in figure 3, the model starts off with a 
lot of mind wandering but slowly begins to shift to more 
focus and then drops below the rising focus percentage out 
at about 5 hours. In the end almost all retrieved memories 
are focus related. 

 

 
Figure 3: The average percentage (of 5-minute periods) of 
focus (blue) and wander (yellow) operators during a 
simulated 18h run. 
 

The SART model was run for 1 training block and 4 test 
blocks like in the empirical study. The results presented are 
the average of 30 runs, as the SART model was somewhat 
variable in its performance, partly due to the relatively short 
simulated time span (18 min as opposed to 18 hours for the 
meditation model). 

The SART model with transfer was run with a meta-task 
memory at the low starting activation level of the meditation 
model: 1.00. As can be seen in Figure 4, the mind 
wandering percentage is lower, while the focus percentage 
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has increased. Furthermore, the hit rate was increased and 
the false alarm rate was lower (not displayed in the figure), 
leading to an increased sensitivity. An independent t-test of 
the mean sensitivity over time revealed that the difference 
was highly significant (t(58) = 4.49, p < 0.001) and that 
Cohen’s effect size of the difference was large (d = 1.18). 
Examination of the Q-Q plot and the Shapiro-Wilk test 
showed no significant deviation from normality (W(60) = 
0.99, p = 0.85). The difference was even more pronounced 
when the meta-task memory was transferred at above 
average activation levels (4.50): t(47.82) = 14.05, p < 0.001, 
d = 3.69. The assumption of normality was rejected (W(60) 
= 0.92, p = 0.001). Therefore a bootstrap test was 
conducted, which corroborated the significance of the effect 
(p = 0.001).  

Discussion 
This paper set out to explore the processes underlying FA 
meditation by creating a cognitive model to simulate it. To 
constrain the model and test its plausibility, a cognitive 
model of a SART was analyzed before and after the transfer 
of two meditation operators and an affiliated memory. 

The meditation model transitions from mainly mind 
wandering to being almost entirely focused on the task at 
hand. There seem to be two main causes for this 
development: The increasing dominance of the meta-task 
memory over the task memory as well as the increasing 
dominance of both intention memories over the mind 
wandering memories. The fact that the meta-task memory 
becomes stronger than the task memory leads to more 
instances of the following sequence: focus retrieval à 
refresh focus à feel breath, and less of this sequence: focus 
retrieval à feel breath. This in turn allows for more 
reinforcement of the focus goal and the meta-task memory 
because the refresh-focus-operator involves goal 
management actions and imagination (strengthens the 
memory). The second cause–the domination of the intention 
memories over the mind wandering memories–leads to more 

of their retrieval and less retrieval of 
the mind wandering memories. In 
other words, it decreases the 
probability of interference by mind 
wandering memories and increases 
the probability of the intention 
memories (mostly the meta-task 
memory) interfering with the 
wander-retrieval. 

This raises the question why the 
meta-task and the task memory 
increase in activation so dramatically 
over time. The intention memories 
probably increased because they are 
retrieved a lot more than any single 
mind-wandering memory. Even 
though the mind-wandering 
memories as a whole are retrieved a 
lot more frequently at first than the 
intentions and even though they 

spread the resulting reinforcement amongst each other to 
some degree (due to their associations), the reinforcement 
per single mind-wandering memory is a lot smaller than for 
the meta-task. What gives the mind-wandering memories 
the upper hand at first–their numbers–becomes a handicap 
as the reinforcement they receive is spread too evenly 
among them. This has interesting implications. It could 
mean that an important aspect of how FA meditation calms 
the mind lies in its simplicity and unidirectionality: it only 
focuses on a small group of memories, while mind-
wandering has a broad focus. It could indicate that if the 
goal management strategy is such that it is sufficient for 
combating mind-wandering loops and interference–even if 
only rarely at first–it can reinforce its associated memories, 
causing it to be more effective in turn, which leads to more 
reinforcement and so on. In other words, if the goal 
management strategy is effective enough in the beginning 
(even if only barely) it can create a feedback loop. And 
while the mind-wandering process creates a feedback loop 
as well, it is less effective, presumably because the loop is a 
lot more dispersed.  

What is interesting about mind-wandering is that it seems 
to creep up stealthily and is often easy to snap out of, but 
only for a few moments, which reflects what we think are 
two core factors in mind-wandering’s longevity: tenacity 
and momentum. The meditation model explored in this 
paper suggests that FA meditation functions on the same 
principles supplemented with the benefits of 
unidirectionality. Yet, what this model leaves out is that 
mind-wandering is typically not a deliberate choice, while a 
main aspect of FA meditation is the conscious, voluntary 
and therefore effortful deciding from moment to moment. 
The model cannot distinguish between bringing something 
to mind consciously and something appearing on its own 
(Seli, Carriere, & Smilek, 2015).  

Possibly the central question is how plausible the 
meditation model is. The meditation model was almost 

 
Figure 4: Measures in the SART before and after meditation training. The plot on 
the left compares the results found in the study by MacLean et al. (2010) before and 
after the retreat with the performance of the model before and after transfer of two 
operators and a memory at an activation level of 1.00. The gray bars represent the 
average sensitivity A’. The plot on the right compares the average percentage of 
focus and mind wandering operators respectively during 18min runs. 
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entirely constrained by internal consistency and basic 
assumptions about Samatha meditation, which is not a 
strong constraint. In order to increase the credibility of the 
meditation model, transfer to other tasks would be 
necessary. Nevertheless, the positive transfer effect of the 
goal management operators to the SART indicates some 
valuable points. It suggests that the mechanisms of the 
meditation model are at least somewhat generalizable and 
are not merely artifacts of a specific modeling situation. It 
furthermore indicates that the mind-wandering paradigm, 
which was very similar in both models, is plausible. 
Furthermore, the transfer was congruent with the kind of 
change one would predict. What is more, the meditation 
model is quite robust, simple and produces reasonable 
behavior considering its parsimony. In other words, there is 
reason to believe that the model captures one important 
aspect that might underlie FA meditation: a feedback loop 
effect induced by patient and deliberate application of a goal 
management strategy. On the other hand, it does not capture 
aspects of meditation that reflect cultivation of a non-
judgmental attitude and transformation of mental habits. 

In short, we have presented the first computational model 
of meditation and have shown that it makes predictions for 
transfer to cognitive task performance. The model suggests 
that the transfer consists of goal management faculties and 
that it enhances performance through a feedback loop 
mechanism. 
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Abstract

ACT-R has been successfully used in psycholinguistics to
model processing data of individual experiments. In this pa-
per, I show how it could be scaled up to model a much larger
set of data, eye-tracking corpus data. It is shown that the re-
sulting model has a good fit to the data for the considered
(low-level) processes. The paper also argues that free param-
eters of ACT-R could and should be estimated using the well-
established methods in other fields, rather than by manually
searching through parameter space. The latter option is simply
impossible to use once we hit the amount of data considered
here. The latter option also makes it hard, if not impossible,
to compare parameters across different (ACT-R) models since
manual search is subjective and usually not well documented
in research papers.
Keywords: parsing; eye tracking; modeling eye tracking;
ACT-R; modeling eye-tracking corpus data; Bayesian infer-
ence of ACT-R parameters

Introduction
ACT-R (Adaptive Control of Thought–Rational) (see
(Anderson, Bothell, & Byrne, 2004) for an introduction) is
a cognitive architecture that has been successfully applied to
various language processing phenomena, for example, syn-
tactic parsing, memory retrieval of arguments and quanti-
fiers, syntactic priming or the reanalysis of syntactic struc-
tures (Lewis & Vasishth, 2005; Vasishth, Bruüssow, Lewis,
& Drenhaus, 2008; Reitter, Keller, & Moore, 2011, a.o.). The
successes of ACT-R in modeling natural language strongly
suggests that the cognitive architecture can be insightful for
linguistics, alongside many other domains of inquiry (cf.
(Anderson, 2007)).

Previous applications of ACT-R focused on modeling of
(some) results of carefully chosen experiments. This leaves
open the question as to how ACT-R fares once we move be-
yond such a domain. If ACT-R is to be useful for language
modeling it should be shown that it can scale up, that is, it
can fare well when modeling a large amount of processing
data (cf. (Taatgen & Anderson, 2002) for such a large scale
ACT-R application in a different psycholinguistic domain).
Furthermore, it is important to see how it fares when model-
ing data that are naturally occurring, not carefully composed
by experimentalists to target one phenomenon. Second, pre-
vious models were hand-crafted to match analyzed phenom-
ena. This can be seen in two ways: (i) grammar rules are
not created automatically, rather, they are manually written,
(one exception here being (Reitter et al., 2011)) (ii) parame-
ters used in the sub-symbolic part of ACT-R are plugged in
by modelers.

In this paper, I will focus on the second issue: the man-
ual search of parameters. The problem with that is that it
makes model fitting subjective. As a consequence, it is very

hard if not impossible to compare various models. For ex-
ample, (Vasishth et al., 2008) differ from (Lewis & Vasishth,
2005) in the values they assume for the latency factor (0.46
vs. 0.14). The model in (Reitter et al., 2011) differs from both
papers in its assumption about the value of the maximum as-
sociative strength (50.0 in the latter vs 1.5 in the former pa-
pers). It is not clear whether these differences are meaningful
or accidental. We do not know how good the model fit would
be if the values of these parameters were matched. We also
do not know what values were considered before settling on
these. Finally, we also do not know whether other parameters
were searched before these were modified. All these concerns
make it hard, if not impossible, to consider model compar-
isons. Maybe even more importantly, selecting the values of
parameters by hand is almost impossible once we scale up
and model more data, especially if we want to fit more than
one parameter.

In this paper, I take first steps to address the worries dis-
cussed above. Further improvements should follow in the
future. First, I consider the application of an ACT-R pars-
ing model to eye-tracking corpus data (the GECO corpus,
(Cop, Dirix, Drieghe, & Duyck, 2016)). Second, I show
how the model can be fitted using Markov-Chain Monte Carlo
(MCMC) methods, rather than a manual selection of param-
eters. Importantly, using MCMC methods makes it easy to
compare the parameters of the current model to other mod-
els. As an example, I make one such comparison, which will
reveal a match between some (but not other) parameters, po-
tentially opening a window into more detailed research into
the role of ACT-R free parameters across models.

Modeled data

The paper presents a model of (a subset of) reading measures
of the Ghent Eye-Tracking Corpus, GECO (Cop et al., 2016).
The corpus consists of eye movement measures collected dur-
ing reading of the book The Mysterious Affair at Styles by
Agatha Christie. The data were collected from 14 English
monolingual readers and 19 Dutch-English bilingual readers.
For the current purposes, we are not interested in the effect of
bilingualism and thus, only monolingual data will be studied.

A desirable feature of the GECO is that the whole corpus
is freely downloadable and its text is in the public domain.
Furthermore, the fact that readers read an entire book, rather
than the collection of random articles/sentences might poten-
tially be useful in the future if we want to model long-lasting
effects (e.g., discourse structures). However, this will not be
attempted here. For the details of the corpus and its compari-
son to other eye-tracking corpora, see (Cop et al., 2016).
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I am afraid I showed my surprise
rather plainly.

Figure 1: Example of a parsed sentence.

AFRAID

ISA: word
FORM: afraid
CATEGORY: adjective


Figure 2: Example of the chunk AFRAID.

Basic ACT-R reader
The reader considered in this paper is very basic. It serves as
the starting point and it can be further expanded.

The reader will visually encode and retrieve words from
English sentences of the GECO corpus, an example of which
is in Fig. 1 (the figure encodes the original line breaks).

The reader starts at the first word of the sentence. It stores
the word in its visual buffer and retrieves information about
the word from its mental lexicon. Once retrieved, the reader
shifts its focus to the next word of the sentence, repeating
the process. When getting to the end of the line (the word
surprise), the reader shifts its visual focus to the beginning of
the next line and proceed in reading. After the last word of the
sentence, the first word of the next sentence will be parsed.

Obviously, the reader in its current form is primitive. It
models only visual processes present in reading and processes
tied to lexical retrieval. This limitation is intentional. It is im-
portant to show that even such primitive models are tangible
and useful in modeling eye-tracking corpus data. Once the
model is in place, we can move to more complex cases.

Details of the model
Symbolic part As is well-known, ACT-R subsumes two
types of knowledge: declarative knowledge and procedural
knowledge (cf. (Newell, 1990) on the difference). While
the declarative knowledge represents our knowledge of facts,
procedural knowledge is knowledge that we display in our
behavior (cf. (Newell, 1973)). Following all previous works
on ACT-R processing I will assume that lexical information
is part of our declarative knowledge. In contrast to that, read-
ing itself is part of our procedural knowledge. The reading
consists of finding a word, retrieving the information about
the word from the declarative memory and moving one’s at-
tention from word to word (in the left-to-right, top-to-bottom
fashion).

The declarative knowledge is instantiated in chunks. The
procedural knowledge is instantiated in production rules (pro-
ductions for short).

The chunks storing lexical knowledge can be kept simple,
given the basic aims of the presented ACT-R reader: they
only store the information about the form and its category,
see Fig. 2.

The procedural knowledge consists only of a handful of
rules, shown in Fig. 3 to Fig. 6.

=g >
state start
=visual location >
?visual >
state free
buffer empty
==>
=g >
state retrieve
+visual >
cmd move attention
screen pos =visual location

Figure 3: Rule ATTEND WORD.

=g >
state retrieve
=visual >
value =val
?retrieval >
state free
==>
=g >
state shift
word =val
−visual >
+retrieval >
form =val

Figure 4: Rule RETRIEVE WORD.

The first rule (Fig. 3) attends the currently considered
word. The second rule retrieves a word from the declarative
memory. The third and the fourth rule (Fig. 5 and Fig. 6) shift
attention to a new word in the same line and to a new word
on a new line respectively. The first rule mimics the left-to-
right reading due to the interplay of two requirements: (i) it
is required that the new word should have the lowest x-value
on the same line as the current word, (ii) at the same time, it
is required that the word should not have been attended pre-
viously (by setting :attended as false). This leaves the closest
word to the right as the only candidate. The jump to the left-
most word in the closest lower line is achieved in a parallel
way in the second rule.

One thing to notice in both rules is the value LASTWORD.
This value is not specified here further, but in the actual model
it would carry the position of the rightmost words on the
screen, allowing the ACT-R model to shift to a new line only
after the reader got to the end of the line.

As is standard, it was assumed that every rule needs 50 ms
to fire.

Subsymbolic part The subsymbolic part of the ACT-R
cognitive architecture is used to match human performance.
Basic ACT-R reader will model eye fixations of GECO as
the function of word length, frequency of the word and word
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=g >
state shift
=retrieval >
cat =x
=visual location >
screen y =ypos
screen x −LASTWORD
==>
=g >
state start
+visual location >
:attended False
screen x lowest
screen y =ypos
−retrieval >

Figure 5: Rule MOVE ATTENTION IN LINE.

=g >
state shift
=retrieval >
cat =x
=visual location >
screen y =ypos
screen x LASTWORD
==>
=g >
state start
+visual location >
:attended False
screen x lowest
screen y closest
−retrieval >

Figure 6: Rule MOVE ATTENTION TO A NEW LINE.

position. For this reason, only two parts of the cognitive ar-
chitecture will be relevant: vision module and the module of
declarative memory. The rest of this section summarizes the
relevant properties of these modules.

ACT-R can be used with various implementations of vi-
sion. Here, we will consider an ACT-R implementation of
the EMMA (Eye Movements and Movement of Attention)
model (Salvucci, 2001), which in turn is a generalization (and
a simplification) of the E-Z Reader model (Reichle, Pollatsek,
Fisher, & Rayner, 1998). While the latter model is used for
reading, the goal of EMMA is to model any visual task, not
just reading. Given the fact that the E-Z Reader model is
one of the most successful models for eye-tracking data, it is
natural to use its ACT-R application, EMMA, for the current
purposes (see also (Engelmann, Vasishth, Engbert, & Kliegl,
2013) for another application in psycholinguistics).

Following E-Z Reader, EMMA disassociates eye focus and
attention: the two processes are related but not identical.

A shift of attention to a visual object triggers (i) an immedi-

ate attempt to encode the object as an internal representation,
and (ii) eye movement.

The encoding takes the time shown in Eq 1.1

Tenc = K ·D · ekd (1)

In the equation, d is the distance between the current focal
point of the eyes and the object to be encoded measured in
degrees of visual angle (in other words, d is the eccentricity
of the object relative to the current eye position), k is a free
parameter, scaling the effect of distance; D is a time parame-
ter of the object to be focused that will affect visual encoding,
and K is a free parameter, scaling the encoding time itself.

In (Salvucci, 2001), it is assumed that D is a function of the
(normalized) frequency of the object, D = −log(Freq). This
assumption is present to capture the fact that high-frequent
objects (words, numbers) tend to be focused shorter and
skipped more often than low-frequent objects. The same ef-
fect is encoded in the E-Z reader, in which encoding time is
scaled by the frequency of the object.

There is a less stipulative way to capture the effect of fre-
quency in Basic ACT-R Reader. Objects (words) have to be
retrieved from declarative memory during reading and the re-
trieval itself is sensitive to frequency effects. The way our
symbolic system is set up will then derive the observed role of
frequency on fixations and skipping indirectly and by a mech-
anism that is needed anyway, lexical retrieval, as we will see
below. This frees Eq 1 from an extra stipulated parameter,
frequency of objects. Instead of frequency, we can therefore
consider other properties relevant for visual encoding. As is
well-established, the length of words affects fixations and it
is natural to assume that such a property would play a role
when encoding an object (but not during lexical retrieval). I
will assume that D is equivalent to the number of characters
of a word, see Eq 2.

D = NChar(Word) (2)

The time needed for eyes to move to a new object is split
into two sub-processes in EMMA: preparation and execution.
The preparation requires 135 ms. The execution, which fol-
lows the preparation, requires 70 ms + 2 ms for every degree
of visual angle between the current eye position and the tar-
geted visual object.2 At the end of the execution eyes focus
on the new position. If a new command to shift an attention
yet again is issued during the preparation phase, the old eye
movement is discarded and a new one takes place. This situ-
ation could be used to model word skipping. For more details
on the interplay between attention shift and eye movements,
see (Salvucci, 2001).

1The equation captures the time needed to encode an object if
we do not assume any noise in the vision module. Otherwise, the
encoding of an object is modeled using a gamma distribution with
the mean Tenc and sd Tenc

3 .
2If eye movement is assumed to be noisy, both measures are

means of a gamma distribution, see the previous footnote.
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The second part of the subsymbolic system important for
us concerns lexical retrieval.

Simplifying somewhat and focusing only on currently rel-
evant parameters, we can say that the time needed to retrieve
a word is a function of its base-level activation. In more tech-
nical terms, we will assume that the activation of a chunk i,
Ai, determining retrieval latencies, is equivalent to its base-
level activation, Bi (normally, chunk activation is modulated
by other chunk properties, and is distributed as Logistic(Bi,s)
with s being a free parameter):

Ai = Bi (3)

The base activation of a chunk in ACT-R, Bi, is in Eq 4,
where d is a free parameter and tk is the time elapsed since
the chunk was presented (stored in memory).

Bi = log

(
n

∑
k=1

t−d
k

)
(4)

The time needed to retrieve a chunk, Ti is shown in Eq 5. f
is a free parameter, scaling the effect of the (base) activation,
F is a free parameter, scaling the latency itself.3

Ti = F · e− f ·Ai (5)

Summing up, fixation times will be affected in several
ways in our model:

• The frequency of words will modulate fixation times, due
to Eq 5, which becomes relevant when the rule RETRIEVE
WORD (Fig. 4) fires. Frequencies will affect retrieval laten-
cies because they affect the number and moments of chunk
presentations. How frequencies are related to the number
and moments of chunk presentations will not be discussed
here in detail due to the lack of space. See (Reitter et al.,
2011) for details, which I follow in this respect.

• The length of words will modulate fixation times, due to
Eq 1 and Eq 2. These equations are relevant when the rule
ATTEND WORD fires, Fig. 3. Furthermore, the length of
words also influence fixation times in a less direct way. As-
suming that fixations always appear at the center of a word,
a word of length, say, 6 letters will make the words to the
left and right appear one letter further than a word of length
4 letters. Due to the fact that executing eye movement is
sensitive to distance, we should see an increase of fixation
times on long words and on words preceding long words.

• Words appearing at the end of line or close to the end of
line should be fixated longer. This is due to the execution
time of eye movement: executing eye movement to a new
line should take more time than executing eye movement
to a new word on the same line.

3In ACT-R literature, f is not always mentioned or used. How-
ever, see (Anderson & Lebiere, 1998). The parameter will be impor-
tant for our purposes.

Modeling reading
Eye-tracking reading measures are commonly split into sev-
eral subtypes. The three most important ones are listed below:

• gaze duration: the sum of the time of all the first-pass
fixations (in ms) made on a word until the point of fixation
leaves the word

• total reading time: the sum of the time of all the fixations
made on a word

• re-reading time: the difference between total reading time
and gaze duration

The paper aims to model the effect of frequency and word
properties (position, length). Such properties are standardly
associated with first-pass measures. This is in fact directly
encoded in E-Z Reader in which (modeled) gaze durations
are functions of such factors, while re-reading measures less
so (see, e.g., (Staub, 2011) for discussion and empirical evi-
dence). Following this insight, I will focus on modeling gaze
durations.

The GECO corpus stores the information about the posi-
tion of each word on the screen. This enables us to fully re-
construct what each participant saw. Using this information,
I re-created the reading materials of GECO.4 I let Basic ACT-
R Reader run and recorded its fixation times on every word
(the value was 0 if a word was skipped). On one third of the
materials, Basic ACT-R reader was run in order to find good
estimates for some of its free parameters (more on this be-
low). On one half of the materials, the model with the found
parameters was studied. (The last sixth of materials was left
out for possible future model comparisons.)

In the previous section, we saw five free parameters. Of
these, only three were estimated: k, see Eq 1, f , see Eq 5,
and F , see Eq 5. I did not model K since it would strongly
correlate with F and the latter parameter might be sufficient,
at least at this point (frequencies correlate with length in the
data set, r = −0.37, p < .001). The d parameter (Eq 4) was
not estimated either. Rather, its default value was used (0.5)
since that is the standard and extremely common practice in
ACT-R research.

As was mentioned in the introduction, parameter estima-
tion is often done by hand in ACT-R. However, that is al-
most impossible to do with the amount of data that we an-
alyze here, especially if we consider more than one param-
eter, as is the case here. Rather than manually finding pa-
rameter values, they were estimated using Bayesian inference
and MCMC procedures. I used the Python implementation of
ACT-R called PYACTR (see https://github.com/jakdot/pyactr).

4The materials were also cleaned and prepared for modeling.
Two most important changes: frequencies from the British National
Corpus based on (Leech, Rayson, et al., 2014) were added; some
of the sentences had two words recorded as one if they were sep-
arated by three dots (. . . ) – such sentences were excluded for two
reasons. First, they would complicate the ACT-R model. Second,
GECO only reports one reading measure for them and it is not clear
how fixations are distributed across the two words.

52



(This Python implementation yields the same reaction time
values for the considered parameters as the canonical imple-
mentation in Lisp.) The parameter estimation was done us-
ing the Python package for Bayesian modeling PYMC3. The
Bayesian model was specified as in Eq 6. GD is the depen-
dent variable gaze duration (in ms), Basic ACT-R( f ,F,k) is
a deterministic function that yields gaze duration per word
by supplying Basic ACT-R Reader with the values of the
three free parameters and letting the ACT-R model run.
HALFNORMAL is a folded normal distribution, GAMMA is
a gamma distribution, UNIFORM a uniform distribution.5

f ∼ HALFNORMAL(µ = 0,sd = 0.5)
F ∼ GAMMA(α = 2,β = 6)

k ∼ HALFNORMAL(µ = 0,sd = 0.7)
α ∼ UNIFORM(0,200)

σ ∼ HALFNORMAL(µ = 0,sd = 10)
GD ∼ NORMAL(α+Basic ACT-R( f ,F,k),σ)

(6)

Notice that when retrieval and time needed to encode a
word is (hypothetically) at 0 Basic ACT-R( f ,F,k) should cor-
respond only to the time needed to fire the relevant produc-
tion rules. However, our current production rules are over-
simplifying reading (e.g., there is no role for syntax or seman-
tics) and thus, it is likely that they underestimate this value.
This is why another parameter was added, α, and its prior was
set as a non-negative value, ranging between 0 and 200 ms.

The parameters were sampled using the Metropolis sam-
pler, with 400 steps, first 30 steps discarded and values initial-
ized at maximum a posteriori point estimates.6 The posterior
results:

f −mean : 0.15;sd : 0.09
F −mean : 0.0001;sd : 0.0001

k−mean : 0.61;sd : 0.04
α−mean : 27.8;sd : 0.5

(7)

Notice that the found values f ,F,k differ from the default
values, which are set at 1.0. However, the default values of
the last two parameters are often changed (e.g., F appears
to carry the values between 0.1 and 0.4 in psycholinguistics,
and k is set at 0.4 in (Salvucci, 2001)). Still, such changes do
not match our found values. Unfortunately, as far as I know,
previous (psycholinguistic) studies did not make systematic
well-documented investigations of parameter estimates, and
thus, it is completely unclear whether the differences reveal
any significant discrepancies or are just accidental. The cur-
rent paper is a step forward in this regard. We need to investi-
gate free parameters of cognitive architectures in a replicable,
methodical and objective way, otherwise model comparisons
become impossible.

5When estimated, the ACT-R parameters are commonly below
0.5. I tried to reflect this by selecting prior distributions whose c.d.f
at 0.5 is greater than 0.5 and have positive skew.

6This is a small number of steps, mainly for practical reasons:
the model is slow since it has to run simulations for every word of
every sentence. However, the probabilistic model is simple and the
found values generate good predictions.

Figure 7: SimRTs and gaze durations split by word frequen-
cies.

The mean values were plugged back into Basic ACT-R
Reader. The model then simulated the reading of one half
of all the sentences appearing in the GECO corpus (differ-
ent sentences than the ones used in the parameter estimation).
The simulated reading times (SimRTs) were used as predic-
tors in a linear model, with mean GD (averaged across partici-
pants) as the dependent variable. The model revealed a signif-
icant effect of SimRTs (β = 1.08, t = 470, p < .001). Notice
that the slope parameter β close to 1 shows that not only does
Basic ACT-R Reader predict gaze durations, it does so in a
way we want it to: 1 ms increase on the side of Basic ACT-R
Reader corresponds to approximately 1 ms increase in actual
gaze duration. The validity of the model can be also seen in
Fig. 7, which plots RTs in seven frequency bands: from 0 to
10 occurrences in the BNC, from 10 to 100 etc. In each band,
the red (left) bar shows mean fixation times as simulated by
Basic ACT-R Reader. The right (blue) bar shows actual mean
fixation times. The ACT-R model underestimates (roughly by
20 ms, which corresponds to the α estimate above) but it lin-
early decreases across frequency bands, closely copying the
actual data. This is an encouraging finding given that the pa-
rameters were not estimated on this set of data. Fig. 8 shows
that the model simulates the effect of word length well, even
though it underestimates very short words, and overestimates
very long words.

Figure 8: SimRTs and gaze durations split by word length.
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An interesting question is whether the estimates of the
model can be independently validated, using the same tech-
nique as above. For this reason, I used ACT-R to model
a different psycholinguistic task, a lexical decision task of
(Murray & Forster, 2004) (their Experiment 1). In the task,
the ACT-R model (and humans) fixated the center of the
screen. At that position a sequence of 5-7 letters appeared.
The model (or human) then had to decide whether the se-
quence is an actual English word and press the corresponding
key. The only manipulation relevant in the modeled experi-
ment was that of the frequency of the appearing word. Thus,
only two parameters were estimated using the data: f and F .

It is known that ACT-R is good at modeling the role of
frequency in lexical decision tasks (cf. (Anderson, 1982),
(Anderson, Fincham, & Douglass, 1999), (Murray & Forster,
2004)). Thus, estimates found this way might significantly
strengthen our previous findings. Interestingly, f was esti-
mated at 0.14 (sd : 0.01), thus being very close to the previ-
ously found estimate. F , in contrast, was estimated at 0.13.
The difference from the previously estimated F is large, see
Eq 7. In other words, while the estimated f might be close
to its real value, the value of F fluctuates too wildly to be
taken seriously. It remains to be seen whether it might help to
model more parameters, add more information to the models
or modify some other properties of the models.

Conclusion
ACT-R has been successfully used in psycholinguistics to
model processing data. In this paper, I showed how it could
be further expanded to model eye-tracking corpus data. The
resulting model had a good fit to the corpus data, at least in
the considered (low-level) processes.

Furthermore, I showed that free parameters could and
should be estimated using the well-established methods in
other fields, rather than by a manual search through parameter
space. The latter option is impossible to use once we hit the
amount of data considered here. The latter option also makes
it hard, if not impossible, to compare parameters across dif-
ferent models since manual search is subjective and usually
not well documented in research papers.

The resulting ACT-R model is a step in the direction of
using ACT-R to simulate not just results of individual pro-
cessing experiments, but diverse and rich corpus data. The
model could be expanded to capture higher level processes
(e.g., syntactic parsing). However, that is beyond the scope
of this paper.
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Abstract

We recently developed a spiking neuron model that performs
magnitude  comparison  and  finger  gnosis  tasks  using  a
common  underlying  neural  system,  explaining  why
performance on these tasks is associated in humans.  Here, we
explore  the  parameters  in  the  model  that  may vary  across
individuals, generating predictions of error patterns across the
two  tasks.   Furthermore,  we  also  examine  the  neural
representation of numbers in the magnitude comparison task.
Surprisingly, we find that the model fits human performance
only when the neural representations for each number are not
related to each other.  That is, the representation for TWO is
no more similar to THREE than it is to NINE.

Keywords: magnitude  comparison;  finger  gnosis;  neural
engineering; number representation

Introduction
We have recently proposed a neural  model of a cognitive
component  underlying  two  disparate  tasks:  finger  gnosis
and magnitude  comparison  (Stewart  et  al.,  2017).   These
tasks have been shown to be related via behavioural, fMRI
imaging,  and  stimulation  experiments,  and  our  model
describes  a  neural  system that  could  be  involved  in  both
tasks, explaining this relation.  However, in the initial paper,
we did not perform an analysis of the effects of parameter
variation on this model.  Our goal in this paper is to present
this  parameter  analysis  in  order  to  better  understand  the
performance of this model.

Finger gnosis is the ability to indicate which fingers have
been touched, out of the view of the participant.  Typically
two  fingers  (on  the  same  hand)  are  touched  while  the
participant's hand is occluded, and they must then indicate
which fingers were touched (Baron, 2004).

The  magnitude  comparison task  considered  here  is
symbolic single-digit number comparison.  Participants are
visually shown two single-digit numbers and they are asked
to indicate which one is larger. 

Individual performance on the finger gnosis task predicts
a variety of mathematical measures in both children (Fayol
et al., 1998; Noel, 2005; Penner-Wilger et al., 2007, 2009)
and  in  adults  (Penner-Wilger  et  al.,  2014,  2015).   In
particular, this relation is partially mediated by performance
on  the  single-digit  symbolic  magnitude  comparison  task
used here (Penner-Wilger el al., 2009, in prep.).  Individuals
who perform better at magnitude comparison also perform
better at the finger gnosis task.

In  addition  to  this  behavioural  result,  representation  of
number  and  finger  gnosis  both  activate  the  same  brain
regions (Andres, Michaux & Pesenti, 2012; Dehaene et al.,
1996; Zago et al., 2001), both tasks are disrupted by rTMS
and direct cortical stimulation to the same regions (Rusconi,
Walsh,  & Butterworth,  2005; Roux et  al.,  2003),  and the
tasks interfere with each other when performed at the same
time (Brozzoli et al., 2008).  For these reasons, we believe
that there is a common component underlying these tasks.
In  other  words,  there  is  some  set  of  neurons  performing
some operation that is used in each task.  This makes it an
example  of  neural  redeployment (Penner-Wilger  &
Anderson, 2008, 2013)

In  the  current  paper,  we  first  outline  in  more  detail  a
model that performs finger gnosis and number comparison,
which we initially reported in Stewart et al. (2017). Second,
we examine the behavioural  effects in these two tasks, as
different parameters in the neural model are varied.  Given
that  the  same  neural  components  are  used,  changing  an
aspect of the model will affect both tasks.  The results of
these variations form a set of predictions about individual
differences  in  performance  on  these  tasks.  Finally,  we
examine  a  parameter  that  only  exists  for  the  magnitude
comparison task.  Here, we need to decide how the different
numbers  are  represented  neurally.   One  possibility  is  to
assume  that  the  number  SEVEN  should  have  a  neural
representation  that  is  more  similar  to  the  neural
representation for EIGHT than it is to ONE, as this might
explain  why more  mistakes  are  made  when  the  numbers
being compared are close to each other.  As is shown below,
the  modelling  result  instead  shows  that  there  is  a  better
match to human performance if the neural representation for
each number is unrelated to the others.

A Common Component
We postulate that the shared system for these two tasks is a
neural implementation of  an array of pointers.  That is, a
neural system that can store a small set of arbitrary values,
each of which can represent something.  For example, one
pointer  could  be  set  to  the  neural  representation  of  the
number  SEVEN,  while  another  pointer  could  be  set  to
represent concepts like DOG or CAT or BLUE or QUIET or
TOUCHED.

Importantly, we do not need to make a strong claim about
the  nature  of  the  neural  representation  of  these  concepts
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here.  Instead, we merely make the weak claim that there is
some pattern of neural activity for each concept, and all we
need is a system that can store an arbitrary pattern.  Here we
generally  randomly  choose  these  patterns,  but  we
investigate what happens when these patterns are related to
each other below.

To describe this system mathematically, we can say that
there are a small set of vectors p1, p2, p3, p4, and p5, one for
each  pointer.   In  order  for  this  system  to  maintain
information  over  time,  if  there  is  no  input,  these  values
should stay as they are.  However, if there is an input, we
also need to indicate which pointer(s) will be changed.  To
do  this,  we  introduce  a  mask  m,  which  controls  which
pointers  will  be affected  by the input  x.   For example,  if
m=[0,1,0,0,0], then the second pointer p2 will be affected by
the input x.  Mathematically, this can be written as:

 (Eq. 1)

For the magnitude comparison task, this would be used as
follows.   First,  the  vector  for  one  of  the  numbers  (e.g.
SEVEN)  would  be  loaded  into  the  first  pointer  value  by
setting  x to  the  vector  for  SEVEN  and  setting  m  to
[1,0,0,0,0].  Next the other number (e.g. THREE) would be
loaded into the second pointer by setting x to THREE and m
to [0,1,0,0,0].  Over time, the values stored in the pointers
would be as follows:

Magnitude Comparison Task

step x m p1 p2 p3 p4 p5
1 -- 00000 -- -- -- -- --
2 SEVEN 10000 SEVEN -- -- -- --
3 THREE 01000 SEVEN THREE -- -- --
4 -- 00000 SEVEN THREE -- -- --

Once these values are stored in the pointers, the rest of the
task  can  be  completed  by  reading  the  values  out  and
performing  the  comparison.   The  details  for  this  are
provided below.

For the finger gnosis task, a similar process is followed,
but we use the pointers in a different way.  In particular, the
value  that  is  being  loaded  in  is  always  the  vector  for
TOUCHED (indicating that this finger was touched), but the
particular pointer that we load it into is what is important.
In  the  following  chart,  we  show  the  process  when  the
second and fourth fingers are touched.

Finger Gnosis Task

step x m p1 p2 p3 p4 p5
1 -- 00000 -- -- -- -- --
2 TOUCHED 01000 -- TOUCHED -- -- --
3 TOUCHED 00010 -- TOUCHED -- TOUCHED --
4 -- 00000 -- TOUCHED -- TOUCHED --

Once these values are loaded in, the rest of the finger gnosis
task involves reading out these values and reporting them,

as is detailed below.  Importantly,  while the remainder of
the finger gnosis task is quite different from the magnitude
comparison task, both tasks make use of this same array of
pointers component.

Neural Implementation
Though this basic idea of an array of pointers is simple (and,
indeed, is trivial to implement in a traditional computational
model),  here  we  implement  this  system  using  spiking
neurons.  The important point here is that neurons will not
perfectly  implement  this  algorithm;  rather,  their  actual
behaviour  will  only  approximate  this  ideal.   Importantly,
this  approximation  can  serve  as  an  explanation  for  the
mistakes  made  by  people  performing  these  tasks.
Furthermore,  changing  the  details  of  this  neural
implementation (for example, how many neurons are used,
or  how  strong  the  mask  is)  can  change  the  resulting
behaviour,  providing  an  explanation  for  the  individual
differences, and how errors on one task relate to errors on
the other task.

To  convert  this  model  to  spiking  neurons,  we  use  the
Neural  Engineering  Framework  (Eliasmith  &  Anderson,
2003).   In  this  approach,  different  groups  of  neurons  are
used to represent  each vector (e.g.  x or  p1).   Connections
between groups of  neurons implement  functions on those
variables.  For example, if one group of neurons represents
x and another group of neurons represents  y, then we can
form a connection from x to y such that  y=f(x).  Given any
particular function f, we can solve for the optimal synaptic
connection weights  between those groups  of  neurons that
will best approximate that function.

When we solve for these synaptic connection weights, we
are  not  making  any  claim  about  how  these  connection
weights  are  learned,  or  how  they  are  formed  in  a
developmental process.  Rather, we are simply finding the
best possible way that the given neurons can perform this
task,  and  leaving  these  larger  developmental  questions to
future research.

With this in  mind, our model  is  presented  in Figure  1.
Each box represents  a  group of  neurons representing one
vector.   Arrows  between  boxes  indicate  connections
between groups of neurons.  In each case, these connections
are optimized to compute the identity function.  This is the
simple  function  that  just  transmits  information  without
changing it in any way.  

Figure 1: A neural implementation of an array of pointers.
Only two pointers are shown.
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The recurrent connection on the pointer neurons indicates
that  those  400  neurons  are  recurrently  connected  to
themselves such that they will pass their own information
back  to themselves.   In  other  words,  whatever  pattern of
neural  activity  is  generated  in  that  group  will  be  self-
sustaining.   That  is,  the  pattern  of  activity  will  be
maintained  over  time.   Of  course,  since  neurons  are  not
perfect, this pattern will not be perfectly maintained, leading
to a gradual decay of this memory system.

To  load  values  into  this  system,  we  place  the  desired
vector as the input  x.  This will drive the various  channel
neural populations to fire, representing that value  x.   This
will then in turn drive the pointer populations to store that
value.  However, with just this system, any x value as input
would  be  loaded  into  all of  the  pointers.   In  order  to
implement Equation 1 completely, we need a mask term to
control which pointers will be affected.  We accomplish this
by  selectively  inhibiting  the  activity  of  the  channel
populations.   If  a  channel  is  inhibited,  the  corresponding
pointer population will not be affected by x.

As described more completely in Stewart et al. (2017), we
implement all  of  this using standard  Leaky Integrate-and-
Fire spiking neurons using the simulation software Nengo
(Bekolay  et  al,  2014).   The  resulting  behaviour  of  the
system loading two pointers (FIVE and SEVEN) is shown
in Figure 2.

Figure 2: Spiking activity for an example magnitude
comparison task. Top row shows input to the model. Other

rows show spiking neuron activity over time. The text
indicates which vector x is represented by the pattern of
activity. Note that pointer 1 and pointer 2 maintain their
spiking pattern (approximately) after the input has been

removed.  Figure from (Stewart et al., 2017).

In order to perform the two separate tasks, we then connect
this same common component to one of two different output
systems.  For the finger gnosis task, the output is simply the
identity function again, as all we need to do is to report the
information stored in the pointers.

For  the magnitude  comparison  task,  we need a slightly
more complex output.  Rather than reporting the two stored
numbers,  we  need  to  report  whether  the  first  number  is
larger or smaller than the second number.  This is, itself, a

function.  So, in order to compute this, we use the NEF to
solve  for  the  optimal  connection  weights  that  will  best
approximate the function that maps the vectors for the two
numbers  to  a  single  scalar  output  that  is  +1  if  the  first
number is larger, and -1 if the second number is larger.  We
can think of this as training a group of neurons to memorize
this list of desired inputs and outputs:

input output

[ONE, TWO] -1
[TWO, ONE] +1

[ONE, THREE] -1
[THREE, ONE] +1
[TWO, THREE] -1

... ...
[NINE, EIGHT] +1

When  we  run  this  model,  we  treat  a  positive  output  as
selecting the first number, and a negative output as selecting
the second number.  In Stewart et al. (2017) we also use the
magnitude of this output to predict reaction times, but do not
do that here.

Results
The  basic  results  presented  in  Stewart  et  al.  (2017)  are
shown in Figure 3.  This includes both the model result and
the empirical result gathered from human participants.  We
plot the percent error for the magnitude comparison task and
for the finger gnosis  task.  Importantly,  we fit  the model
parameters  based on the magnitude comparison task  only,
leaving the finger gnosis task as a pure prediction based on
those same parameter values.

Figure 3: Best-fit model results for the magnitude
comparison task (left) and finger gnosis (right).  Parameters
are fit on the magnitude task and then applied to the finger

gnosis task.  Standard errors are shown.

The best-fit parameters are as follows:

parameter value

# neurons for combining pointer values: nc 1000
Standard deviation of training noise: noiset 0.15

Amount of channel inhibition: c 0.875
Dimensionality of x vector: D 8

Uniqueness of digit representation: u 1.0
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This core result indicates that the model captures the basic
characteristics  of  the  behavioural  data.   For  magnitude
comparison,  we  see  the  standard  distance  effect,  where
numbers that are farther apart (e.g. 2 and 7) are easier than
numbers that are closer together (e.g. 5 and 6).  We see a
similar effect for finger gnosis, with the exception of when
two fingers  right  next  to  each  other  are  touched.   In  the
human participant data, fingers next to each other are easier
than fingers that are two apart.  The model shows this same
effect, but it is much more pronounced.

Parameter Exploration
To further characterize this model, we systematically varied
these parameters.  Importantly, since our theory is that both
of  these  tasks  use  the  same  common  neural  system,
whatever parameter value is used for one task should also be
used for the other task.

However, this is only true for an individual person.  It is
plausible that, if this model is correct, different people may
have different parameter values for this system.  Thus, by
changing these parameter values we make predictions about
how  performance  on  these  two  tasks  may  co-vary  in
individuals.

Parameter 1: nc
The  first  parameter  is  the  number  of  neurons  to  use  to
combine together the outputs from all of the pointers.  Once
combined together in this way, we can either create output
connections  that  compute  which  of  the  two  numbers  is
biggest (for magnitude comparison) or that just compute the
identity function (for finger gnosis).  However, the accuracy
of  this  computation  will  be  affected  by  the  number  of
neurons used.  This is shown in Figure 4.

Figure 4: The effects of varying the number of neurons used
to combine the represented pointer values together for the

magnitude comparison task (left) and the finger gnosis task
(right).  Standard errors are shown.  

From  this,  we  note  that  500  or  fewer  neurons  gives
significantly  higher  error  rates  than  the  mean  human
performance on both tasks.  Having more than 1000 neurons
gives improved performance for the magnitude comparison
task  and  most  of  the  finger  gnosis  task,  but  does  not
improve the peak error at a finger distance of two.

Parameter 2: noiset
Next,  we look a the amount  of  random noise used when
finding  the  connection  weights  out  of  this  combined
population.  That is, the neural activity from this combined
population must cause change in a separate population that
represents the network's response to the task.  This change
is, of course, due to synaptic connection weights.  When we
use the Neural  Engineering Framework to solve for these
weights,  we  can  specify how much random variability  is
added.  The right amount noise should make the network
more robust to random variations, but too much noise will
cause it to lose accuracy.  The results are shown in Figure 5.

Figure 5: The effects of varying the amount of noise used in
training the weights for the tasks for the magnitude

comparison task (left) and the finger gnosis task (right).
Standard errors are shown.  

For  the  magnitude  comparison  task,  we see  the  expected
effect where there is an optimal value for this noise (0.15).
Less  noise  than  this  gives  extremely  poor  results  for  all
distances.   Interestingly,  having more noise than this only
increases  the  error  for  small  differences  between  the
numbers.

For the finger gnosis task, we get the surprising result that
the model is unaffected by the amount of noise.

Parameter 3: c
Next, we examine the inhibition factor which turns off the
channels leading into each pointer.  With a value of 1, this
inhibition would perfectly inhibit all of the neurons in the
non-active  channels,  leading  to  no  activity  in  those
channels, and thus no change in the other pointer values.  If
this  is  less  than  one,  however,  the  neurons  will  not  be
perfectly  “turned  off”,  and  so  there  will  be  some  small
influence on the other pointers when one of them is set.  For
example,  in Figure  2,  we see some neural  activity in the
channels that are not being set, reflecting c<1.  We assume
this amount of inhibition scales  linearly with the distance
from the target item, so values sent into pointer 1 have more
influence on pointer 2 than they do on pointer 3.  Results are
in Figure 6.
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Figure 6: The effects of varying the amount of channel
inhibition for the magnitude comparison task (left) and the

finger gnosis task (right).  Standard errors are shown.

In this case, we get  a clear result that there is an optimal
value for c (we found 0.875 best).  Importantly, this optimal
value works for both the magnitude comparison task and the
finger gnosis task.

Parameter 4: D
Finally, we vary the dimensionality of the input stimulus x.
This  controls  the  degrees  of  freedom  in  the  randomly
chosen patterns for each represented concept (ONE, TWO,
TOUCHED, etc).  Results are shown in Figure 7.

Figure 7: The effects of varying the dimensionality of x for
the magnitude comparison task (left) and the finger gnosis

task (right).  Standard errors are shown.

Here, we see that the magnitude comparison task indicates
that  if  D is  too large  (i.e.  32 or  64),  it  produces  a  large
increase  in  the  error,  but  just  for  the  case  where  the
difference  between the  numbers  is  1.   It  also produces  a
large increase in error overall if D is too small (i.e. 4).  For
the  finger  gnosis  task,  small  D produces  a  very  large
increase  in  error  as well,  but  large  D (above 8)  causes  a
massive decrease in the error.

Number Representation
If we consider just the magnitude comparison task, there is a
further  parameter  that  is  worth investigating.   This  is  the
question of how numbers are represented in the model.  In
particular,  should  the  representation  for  TWO  be  more
similar to THREE than it is to NINE?  After all, as can be
seen in the human data, participants are more likely to make
mistakes when number are close to each other, which seems
to imply that the neural activity for TWO should be more
similar to the activity for THREE than it is to NINE.

As we are using a vector representation in this model, this
becomes the question of how to choose what vector to use

for ONE, TWO, THREE, etc.  In the simplest case, we can
choose these vectors completely randomly, so that there is
no  similarity  structure.   At  the  other  extreme,  we  could
randomly choose a vector for ONE, a different vector for
NINE, and then smoothly interpolate between these two to
create  the  vectors  for  TWO,  THREE,  FOUR,  etc.   To
explore  this,  we  define  a  parameter  u  which  interpolates
between fully random representation where each number is
represented with a different random unique number (u=1.0)
and fully structured representation where TWO is halfway
between ONE and THREE (u=0.0).

The  effects  of  varying  this  uniqueness  parameter  are
shown in Figure 8.  Crucially, if there is low uniqueness (i.e.
if the neural representation of TWO is more similar to ONE
than it is to NINE), then we reach a much higher error rate
than is observed in the human data.

Figure 8: The effects of varying the uniqueness of the
number representation in the magnitude comparison task.

Standard errors are shown.

This  was  a  surprising  result  for  us.   The  observed  error
pattern in the human data (where numbers that are close to
each other are more likely to produce errors) is not the result
of  the  actual  neural  representation  of  the  numbers  being
similar to each other.  Rather, this pattern of errors is due to
mistakes made in extracting the information from the group
of  neurons.   When  neurons  are  used  to  approximate  the
“which number is larger” function, the optimal connection
weights  lead  to  a  system  which  is  more  likely  to  make
mistakes between nearby numbers, even though they are not
“nearby” in terms of neural activity.   They are, however,
nearby in terms of the function being computed.

Conclusions
We  have  examined  the  behaviour  of  a  model  of  how
magnitude comparison and finger gnosis can both rely on
the same common neural component: a system for storing
an array of pointers.  Since this neural system is believed to
be  used  in  both  tasks,  by  varying  the  parameters  of  this
system we produced predictions of how an individual's error
performance  on  both  tasks  can  be  related.   However,  it
should be noted that  all  of  the comparisons performed in

59



this paper were to the mean human performance.  The next
step  is  to  look  at  individual  differences  in  this  task  and
determine if the same patterns occur in the participant data.
If  it  does,  then  we  may  have  an  explanation  for  this
variation  in  terms  of  different  people  having  different
parameter settings for this common component.

Furthermore, we have a novel explanation as to why the
distance effect exists.  In our model, the distance effect (the
fact that more errors are made when two numbers are close
in  magnitude)  is  not due  to  those  two  numbers  having
similar  neural  representations.   Rather,  the  neural
representation of each number is completely random.  If we
do impose some similarity in the neural representation, then
the distance  effect  becomes  much larger  than  it  is  in  the
participant data.  This means that in our model, the distance
effect  emerges  purely  from  the  difficulties  involved  in
generating synaptic connections that determine which of the
two  numbers  is  larger,  rather  than  the  more  typical
interpretation that it  comes from similarities in the neural
representation itself.
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Abstract
We explore the effects of parameters in our novel model of
model-based reinforcement learning. In this model, spiking
neurons are used to represent state-action pairs, learn state
transition probabilities, and compute the resulting Q-values
needed for action selection. All other aspects of model-based
reinforcement learning are computed normally, without neu-
rons. We test our model on a two-stage decision task, and com-
pare its behaviour to ideal model-based behaviour. While some
of these parameters have expected effects, such as increasing
the learning rate and the number of neurons, we find that the
model is surprisingly sensitive to variations in the distribution
of neural tuning curves and the length of the time interval be-
tween state transitions.
Keywords: neural model; reinforcement learning; model-
based reinforcement learning; Neural Engineering Framework

Introduction
Reinforcement learning (RL), a formalization of reward-
based decision making, is often divided into two sub-types:
model-free and model-based (Sutton & Barto, 1998). This
distinction has been used by neuroscientists to explain as-
pects of instrumental conditioning in humans and other ani-
mals. Daw, Niv, and Dayan (2005) drew parallels between the
habit system (where actions are performed automatically) and
model-free RL; and between the goal-directed system (where
actions show evidence of planning) and model-based RL.
Model-free and model-based learning have been proposed
to be realized in the brain with separate systems that rely
on different prediction error signals (Glascher, Daw, Dayan,
& O’Doherty, 2010). There has been extensive research on
model-free RL, including work on how it may be instantiated
in the brain according to the reward prediction error theory of
dopamine (e.g., Barto, 1995). There is significantly less focus
on model-based RL, including a particularly evident lack of
suggestions as to how it may happen in the brain (Friedrich
& Lengyel, 2016).

We have developed a novel model of model-based RL
that uses spiking neurons to represent state-action pairs,
learn state transition probabilities, and compute the resulting
Q-values needed for action selection. The present work aims
to investigate the factors that influence the behaviour of this
neural model.

Background
In both model-free and model-based RL approaches, the goal
is to learn from experience how valuable different actions are,
given the current state (Sutton & Barto, 1998). This is written
as Q(s,a), where s is the state, and a is the action.

Initial
State

State A State B

Action a

     0.7

Action b

     0.7
0.30.3

R(A, a) R(A, b)Reward Prob. : R(B, a) R(B, b)

First Stage

Second Stage

Figure 1: Schematic diagram of the two-stage task. The num-
bers on the arrows in the first stage indicate the probability
of a particular state transition, given the chosen action. The
reward after performing an action in the second stage is ran-
domly determined based on the reward probability. Adapted
from Akam et al. (2015).

In model-based RL, the value Q of an action in a particular
state is given by the Bellman equation (Bellman, 1957):

Q(s,a) = R(s,a)+ γ∑
s′

P(s,a,s′)max
a

Q(s′,a), (1)

where R is the expectation of reward, P is the probability of
transitioning from state s to s′ if action a is performed, and γ is
a future discounting parameter. Importantly, in order to com-
pute this, the system needs to know the state transition prob-
abilities P(s,a,s′). This set of probabilities can be thought of
as a model of the environment, and is why this approach is
called model-based.

In contrast, model-free RL does not create an explicit rep-
resentation of the environment. Rather, it just uses whatever
state st+1 occurs after the action a in the current state st . This
can be thought of as an estimate of the typical next state that
will occur. This leads to an approximation of Eq. 1 that does
not take into account the transition probabilities, but is much
simpler to compute:

Q(st ,a) = R(st ,a)+ γmax
a

Q(st+1,a). (2)

Model-free RL constructs an estimate of Eq. 1 through di-
rect experience in the environment, which leads to an implicit
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(a) Ideal model-free behaviour (b) Ideal model-based behaviour (c) Human behaviour

Figure 2: Ideal and human stay probability behaviour on the two-stage task. C denotes common, and R denotes rare, state
transitions. Trials are either rewarded (+) or unrewarded (−). Adapted from Daw et al. (2011).

representation of environmental statistics. In contrast, model-
based RL constructs an internal model of the probabilities of
reward R and state transitions P. This explicit learning of the
statistics is used to directly calculate the Bellman equation.

Given this difference, there are situations where the learn-
ing trajectories will differ between model-free and model-
based RL. As discussed in the next section, particular learning
tasks can be defined to distinguish the two approaches.

Two-stage task
We test our model on the two-stage task described in Daw
et al. (2011). A schematic diagram of this task is shown in
Fig. 1. The first stage consists of an initial state, which has
two possible actions (a and b). These actions lead probabilis-
tically to one of the two second stage, or terminal, states (A
and B), with action a commonly transitioning to state A and
action b commonly transitioning to state B. These common
state transitions each have a probability of 0.7; correspond-
ingly, rare transitions have a probability of 0.3. In states A
and B, actions a and b are again available, and are rewarded
with probability determined by a Gaussian random walk, so
that the immediate reward after performing an action in a sec-
ond stage state is either 0 or 1. This randomness was intro-
duced to enforce continued learning throughout the task.

This task was developed to discriminate model-based from
model-free behaviours, using the stay probability, i.e., the
likelihood of choosing the same initial-state action in trial
n+1 as in trial n (Daw et al., 2011). In particular, if an agent
finds itself in a rare (R) second-stage state (given their action
in the initial state), and performs an action that is rewarded
(+), a purely model-free strategy would increase the value of
performing that first-stage action, as shown in Fig. 2a, while
a purely model-based strategy would increase the value of be-
ing in that second-stage state, thus increasing the value of the
unchosen first-stage action and decreasing the stay probabil-
ity (see Fig. 2b, R+). By similar logic, in a rare, unrewarded
state (R−), a model-based agent would increase the value of
choosing the initial action, thus increasing the stay probabil-
ity.

As an example of model-based reasoning, say an agent has

found itself in state B after performing action a. The agent
“knows” this is a rare transition. Now say the agent performs
some action and receives a reward. This increases the value
of being in state B, so the agent wants to return to this state.
Since the agent knows that state B is more commonly reached
after performing action b in the initial state, it will also in-
crease the value of performing action b in the initial state and
correspondingly decrease the value of performing action a
in that state. Conversely, a model-free reasoner would sim-
ply increase the value of every state-action pair it performed
before receiving the reward, and so the value of performing
action a in the initial state would increase.

Daw et al. (2011) found that human behaviour on this
task showed characteristics of both model-free and model-
based strategies (see Fig. 2c). In particular, there is a sta-
tistically significant difference between rare-rewarded (R+)
and common-unrewarded (C−) probabilities not evident
in model-based behavior, and there are elevated rare-
unrewarded (R−) and common-rewarded (C+) probabilities
relative to the C− probabilities that is not evident in model-
free behaviour.

Model
Fig. 3 shows a schematic diagram of the model we built us-
ing the Nengo neural simulator (Bekolay et al., 2014), which
is based on the principles of the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). The NEF provides
methods to generate neurons with random properties (such as
tuning curve distributions) and then arrange them so that they
best approximate a given representation or transformation.

The neural model includes two components of model-
based RL: 1) the representation of the state transition prob-
abilities P(s,a,s′), and 2) the multiplication of these prob-
abilities by the Q-values of the future states to produce an
estimate of the Q-values of the current state’s actions. We
implement these components using spiking leaky-integrate-
and-fire (LIF) neurons (Lapicque, 1907) via the NEF, while
the rest of the model-based RL system is implemented using
traditional computation.

In the model, the states and actions are represented by vec-
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tors. For simplicity of explanation, we refer to these vec-
tors as orthogonal, with the smallest possible dimensionality
(three dimensions to represent the three states, and two for
the two actions); however, our methods allow these vectors to
be arbitrarily large. In the model, we use 5-dimensional vec-
tors. For purposes of explanation, we will use 3-dimensional
vectors, and assume state A is represented by SA = [1,0,0],
state B by SB = [0,1,0], and the initial state by S0 = [0,0,1].
The rest of the model components, shown in rectangles in
Fig. 3, are implemented directly without neuron approxima-
tion. These components perform action selection, track and
update the environment’s actual state transitions and reward,
learn the model-free Q-values of actions in states A and B,
and store all the Q-values (for use in action selection).

In the design of our model, we exploit the natural par-
allelism of a neural implementation. In traditional model-
based approaches, the state transition probabilities P(s,a,s′)
are stored in lookup tables. However, in our model, these
probabilities are represented by a function computed in a con-
nection between neural populations that maps state-action in-
puts to a second-state probability distribution as follows:

P(s,a) = [P(s,a,SA),P(s,a,SB),P(s,a,S0)]. (3)

For example, P(S0,a) = [0.7,0.3,0.0] in the two-stage task.
In a traditional model-based agent, the value of actions in

states in the first stage (in this case, the single initial state) are
recalculated at the beginning of each trial, with:

Q(s,a) = ∑
s′

P(s,a,s′)max
a

Q(s′,a). (4)

In our model, this calculation is done in neurons. Specifi-
cally, using our modified representation of the state transition
probabilities, we calculate the following dot product:

Q(s,a) = P(s,a) ·Q(a′), (5)

where Q(a′) is the vector of the best possible action for every
state.

Although multiplications are non-linear, they have a well-
characterized implementation in neurons that can be imple-
mented accurately with the NEF (Gosmann, 2015). A neural
population, called Product in Fig. 3, performs an element-
wise multiply based on this characterization, and a summa-
tion is performed by the output connections to compute Eq. 5.

To illustrate how this would be done by a model-based
agent using the two-stage task, consider an agent that is in
the initial state and considering performing action a (i.e., s =
S0,a= a). The agent remembers the Q-values of the best pos-
sible action a′ for every state, say Q(a′) = [0.25,0.75,0.33],
as well as the probability of reaching that state given the cur-
rent state and action (as before, P(S0,a) = [0.7,0.3,0.0]). To
calculate the Q-value of the current state and considered ac-
tion, it performs the dot product of these two vectors, produc-
ing a value of Q(S0,a) = 0.4. It then follows the same process
to consider action b, and finds Q(S0,b) = 0.6.

Environment
State and 

Action

Product

State

Action

 Q-values

Initial state Q-values

Figure 3: Model diagram. The components of the model
shown in oval shapes are simulated populations of neurons
that perform representations and transformations. The rectan-
gular components are directly computed without neuron ap-
proximation. The connection between the State and Action
population and the Product population calculates Eq. 3 ac-
cording to the ideal state transition probabilities. The Prod-
uct population performs an element-wise multiply between
the transition probabilities and the Q-values stored in the en-
vironment. The connection from Product to the environment
adds the results of that multiply. These last two steps together
calculate Eq. 5.

The resulting Q-values need to be updated for both possible
actions in the initial state. One possibility is to perform this in
parallel (i.e., to have separate groups of neurons that perform
this computation for each possible action). However, since
this may be problematic if the number of actions grows to be
large (or is unknown), we consider a serial strategy. Specif-
ically, we have assumed the neural system considers actions
one after the other over time. Although the actions are con-
sidered sequentially, all of the possible future states following
those actions are considered in parallel.

Consistent with previous (non-neural) models of this
task (Daw et al., 2011), the values of actions in the terminal,
stage-two states are updated using a version of Q-learning:

Q(s,a)← (1−α)Q(s,a)+αr, (6)

where α is a learning rate parameter and r is the immediate
reward (Akam et al., 2015). This calculation is done directly,
rather than with neurons.

Action selection is performed by approximating a softmax.
That is, to determine the action performed in a given state, a
small amount of random noise is added to the Q-values for
all the actions in that state before selecting the action with the
highest Q-value.

Method
We explore four parameters that influence the model’s be-
haviour on the two-stage task:

1. The learning rate α (from Eq. 6), which affects how much
the Q-values of the terminal states are changed after receiv-
ing a reward.
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(a) learning rate = 0.05 (b) learning rate = 0.3 (c) learning rate = 1

Figure 4: Examples of different stay probability behaviours for various learning rates with a Nengo seed of 1. Error bars are
95% confidence intervals.

Figure 5: Stay probabilities of different learning rates. Error
bars are 95% confidence intervals, and are sometimes smaller
than data point markers.

2. The number of neurons in the State and Action and Prod-
uct populations, which affects the accuracy of the repre-
sentation and multiplication.

3. The random properties of the neurons used in the model
are determined by Nengo according to a random seed. Dif-
ferent values of this seed produce different random distri-
butions of neural tuning curves, so versions of the model
instantiated with these different seeds can be thought of as
different individuals.

4. The time interval between state transitions. The effect this
is expected to have is that if the time interval is too short,
the neurons will not have adequate time to compute the
Q-values, and so the stay probability may be uniform in
all rewarded (+) or unrewarded (−) and common (C) or
rare (R) cases, since the agent is choosing actions based on
essentially random information.

For each tested case, we run our simulations with twenty

Figure 6: Stay probabilities of different numbers of neurons
in the State and Action population. Model-based behaviour is
clearly distinguishable with 100 or more neurons. Error bars
are 95% confidence intervals.

sessions of 10000 trials each. Each session is run with a dif-
ferent random seed for the environment, which determines
the random behaviour of state transitions, the random noise
in the action selection, and the random walks of reward prob-
abilities.

Results
Learning rate
As shown in Figs. 4 and 5, as the learning rate α is increased,
the effect of model-based reasoning is also increased; that is,
the stay probabilities of the C+ and R− cases are increased,
while the stay probabilities of the R+ and C− cases are de-
creased. When α = 1.0, the most extreme example, there is
no model-free learning; the Q-value of the terminal states is
simply the reward (0 or 1) that was most recently received.
In this situation, when calculating the Q-values of the initial
state as in Eq. 4 or 5, the Q-values will either be exactly the
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Figure 7: Stay probabilities of different numbers of neurons
in the Product population. Error bars are 95% confidence
intervals.

state transition probability, or 0. When α is a lower, for exam-
ple α = 0.05, much more emphasis is put on the learned val-
ues of the terminal states, and those values are learned much
more slowly, and so they interfere with the model-based rea-
soning.

Number of neurons
In general, decreasing the number of neurons in the State
and Action population has a similar effect to decreasing the
learning rate: the stay probabilities of the C+ and R− cases
decrease and the stay probabilities of the R+ and C− cases
increase as the number of neurons decreases. This trend is
shown in Fig. 6. Populations of at least 100 neurons were
sufficient for producing clearly model-based stay probability
behaviours. For most other simulations, a default value of
500 neurons was chosen because it produces a clear separa-
tion between C+, R− and R+, C− stay probabilities.

Increasing the number of neurons in the Product popula-
tion above 200 per dimension did not produce any significant
benefits, as shown in Fig. 7.

Individual
As shown in Fig. 8, there are large individual differences be-
tween different Nengo seeds. Many of them produce pure
model-based stay probability plots (Fig. 8a), while some have
a significant difference in stay probabilities between the R+
and C− cases that is reminiscent of human data (Fig. 8b), and
in others, that significant difference is in the opposite direc-
tion to the human data (Fig. 8c). However, when averaged
across individuals, the stay probabilities are characteristically
model-based.

Time interval
As expected, it is necessary for the time interval between state
transitions to be sufficiently long in order for the neurons to

compute the Q-values. However, the individual differences
discernible between different Nengo seeds are also depen-
dent on the length of the time interval between state transi-
tions; surprisingly, there is no apparent relationship between
the length of the time interval and the stay probability be-
haviour. Three examples of stay probability behaviour with
a Nengo seed of 1 are shown in Fig. 9. These can also be
compared to Fig. 8b, which shows the same seed with a time
interval of 50ms. Of particular interest is the discrepancy be-
tween Figs. 9b and 9c, since these time intervals have only
a 10ms difference, yet show almost opposite stay probability
behaviours.

Discussion

The core result of the research presented here is that, in gen-
eral, the neural model of model-based reinforcement learning
matches the expected results of a model-based agent. This
is demonstrated by data aggregated across individual Nengo
seeds, as well as particularly clearly by the trend produced
by varying the learning rate α. The value of alpha that pro-
duced the greatest difference between the C+, R− and R+,
C− stay probabilities (demonstrating a strong model-based
effect) was α = 1.0. This suggests that it may not be neces-
sary for models of the two-stage task to use the model-free Q-
learning component to estimate the values of terminal states
(Eq. 6), since model-based stay probability behaviour can be
produced when the values of the terminal states are taken to
be the immediate reward.

The effect of varying the number of neurons in the State
and Action population is also as expected for a purely model-
based agent. As the number of neurons increases, the repre-
sentation of the current state and action is improved, which
increases the likelihood of calculating the correct state transi-
tion probability as the input to the Product network.

The stay probability pattern reminiscent of human data
reappeared with a number of Nengo seeds and time intervals.
The individual differences between Nengo seeds demon-
strates that the stay probability behaviour is surprisingly sen-
sitive to the distributions of neurons. Future work will be
done to further investigate this result.

The most unforeseen result was that of the length of the
time interval and its interaction with the Nengo seed. In-
creasing the length of the synaptic filter may eliminate this
irregular effect; future work will investigate this and other
possibilities.

Conclusion

Our investigation of the effects of four parameters on the stay
probability behaviour of a neural model of model-based re-
inforcement learning established that it typically performs as
expected of a model-based agent. However, individual dif-
ferences between certain parameter values demonstrated the
model’s sensitivity to the distribution of neural tuning curves
and the time interval between state transitions.
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(a) seed = 8 (b) seed = 1 (c) seed = 7

Figure 8: Examples of individual differences between Nengo seeds: (a) pure model-based stay probability behaviour, (b) stay
probability behaviour suggestive of human data, and (c) stay probabilities opposite to those in (b). All trials were run with a
time interval of 50ms. 95% confidence intervals are shown.

(a) time interval = 200ms (b) time interval = 500ms (c) time interval = 510ms

Figure 9: Examples of different behaviours for various time intervals with a Nengo seed of 1. Error bars are 95% confidence
intervals.

Notes Supplemental material, including python scripts,
is available at https://github.com/ctn-waterloo/cogsci17-
rl/refactor.
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Abstract

Due to the correspondence between the striatal dopamine sig-
nal and prediction error signal utilized by model-free rein-
forcement learning methods, computational psychological re-
search has found much success in modeling the basal gan-
glia as a biological implementation of a reinforcement learn-
ing mechanism. A large majority of these modeling efforts
have focused on applying the tenets of reinforcement learning
to the proposed functions of the basal ganglia, but few (if any)
have attempted to apply crucial aspects of basal ganglia neuro-
physiology to reinforcement learning mechanisms. Here, we
propose a basal ganglia-plausible model that explicitly utilizes
two symmetric sets of actions (analogous to the basal ganglia’s
direct and indirect pathways), to simultaneously update value
estimates of both available actions (i.e. chosen and not chosen)
in the Probabilistic Stimulus Selection (PSS) task. We demon-
strate that this proposed model architecture outperforms a stan-
dard reinforcement learning model of the PSS task by eliminat-
ing the standard model’s bias towards estimation of the most
valuable available actions, while granting improved resistance
to noise in the internal selection process.

Keywords: Reinforcement learning; basal ganglia; dopamine;
computational models

Introduction
Model-free reinforcement learning (RL) is a powerful ap-
proach for obtaining an optimal long-term action policy in the
absence of transition probability and reinforcement functions.
In other words, a model-free RL agent must interact with an
unknown environment (i.e., sample the environment repeat-
edly through action) in order to construct an optimal control
policy, based on the pattern of reward received by interaction
with the environment. This framing of RL methods makes
clear their power in modeling human and animal decision-
making. Policies refined through RL mechanisms are ori-
ented such that the agent’s (i.e., human/animal) actions con-
sider both immediate and future reward, optimized to max-
imize some value over time. The key idea that enables an
agent to determine an optimal policy within an unknown envi-
ronment is that of temporal-difference (TD) learning (Sutton,
1988).

The ideas behind TD methods have since been expanded,
including a proposal by Watkins and Dayan (1992) that de-
fined a TD control algorithm now known as Q-learning. Q-
learning is an off-policy method that allows the agent to
choose to take non-optimal actions while still estimating an
optimal value function. By updating action values based on

the best action available while allowing the agent to make in-
ferior choices, this procedure increases the rate of learning
under a suboptimal action selection process. Both TD learn-
ing and Q-learning have been shown to converge to the op-
timal value function with probability P = 1 (Sutton & Barto,
1998).

However, in some circumstances, these model-free RL
methods produce suboptimal results. As defined, these meth-
ods emphasize learning of rewarding actions – updating the
value of a state/state action (SA) pair increases the likelihood
that the agent will choose the action that leads to that state/SA
pair when it is next given the opportunity to do so. As a re-
sult, even though it converges to an optimal value function,
an agent still does not have complete knowledge of its envi-
ronment – namely, it does not know much (if anything) about
the least rewarding states/SA pairs. This is an instance of the
general exploration-exploitation trade-off that many models
encounter. Lacking knowledge of the least rewarding alter-
natives is not an issue while the agent has full access to its
actions, but what if learned “good” (i.e. optimal) states/SA
pairs are blocked from the agent? In this case, the agent can-
not take the actions it usually would by following its policy
and value function, and as a consequence, cannot act opti-
mally within the “new” environment. In essence, the agent
has no knowledge of how to navigate bad options – how to
choose the “least bad”, when forced to.

The Probabilistic Stimulus Selection Task
A situation in which this circumstance arises is when model-
ing a well-known psychology task paradigm, the Probabilistic
Stimulus Selection (PSS) task (Frank, Seeberger, & O’Reilly,
2004). The PSS task is a repetitive, two-alternative forced-
choice task made up of two consecutive phases, a training
phase in which a participant repeatedly makes choices be-
tween fixed pairs of stimuli, and a test phase where the par-
ticipant is presented with new combinations of options (see
Figure 1).

Across both phases, there are six possible stimuli, imple-
mented as symbols that are difficult to describe (in order
to make memorization of each stimulus history of success
more difficult). Each stimulus carries an intrinsic probabil-
ity of success, ranging linearly from 20% to 80%. During
the training phase, the stimuli are presented a fixed pairs, for
a total of three sets: (A,B) (C,D), and (E,F), with associ-
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Figure 1: An overview of the Probabilistic Stimulus Selection task. In the training phase, participants learn to identify the best
option within three pairs. In the ]test phase, the six options appear in new paired combinations.

ated reward probabilities of (80%,20%), (70%,30%), and
(60%,40%), respectively. Participants receive feedback re-
garding the outcome of their decision directly after making
a selection, and are instructed to attempt to maximize their
success by choosing what they believe to be the “correct” op-
tion on each trial. esponses that are probabilistically deter-
mined to be errors are associated with negative reward (i.e.
“feedback”), while those deemed correct are associated with
positive reward, with the consequence that a component of
“good” performance is avoiding “bad” (i.e. low probability of
success) choices. Once a participant’s performance reached a
predefined criterion (different for each pair: 65%, 60%, and
50% probability of choosing the higher valued option for the
sets of (A,B) (C,D), and (E,F), respectively), the test phase
begins. During the test phase, participants are shown all pos-
sible combinations of the six stimuli(fifteen total, four times
each, for a total of 60 trials), and do not receive feedback upon
selection. From the test phase, two different measures are cal-
culated: the participant’s Choose accuracy, that is, the prob-
ability of choosing the highest valued alternative (A; 80% re-
ward probability) when it is paired with any other alternative,
and the participant’s Avoid accuracy, that is, the probability
of not choosing the lowest valued alternative (B, 20% reward
probability) when it is paired with any other alternative (ex-
cepting A). These measures can generally be interpreted to be
the participant’s tendencies to pursue reward and avoid pun-
ishment, respectively.

Human participants perform close to criterion in the test
phase, with an average of about 70% accuracy in both Choose
and Avoid accuracies (Frank et al., 2004; Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007; Stocco et al., 2017).

Model Comparisons
General Model Implementation
The PSS task poses a number of important constraints for the
design of RL agents. In this section, we outline these con-
straints, and how they were addressed in the implementation

of our agents.
The first constraint is that the set of actions available to an

agent corresponds to the decision options in the task, that is,
the six options A,B . . .F .

The second constraint is that an agent should be able to
generalize the Q value of an action to an different state. This
is essential to permit generalization of the Q-values learned
during the training phase (Figure 1A and 1B) to the new set
of pairs in the test phase (Figure 1C and 1D). A number of
mechanisms have been proposed to generalize Q-values to
new states. In this paper, we have taken the minimalistic ap-
proach of associating all actions to a single state s, but chang-
ing the set of actions available at every trial depending on the
options presented. Thus, in a trial where the options A and B
are presented, only the actions aA and aB will be selectable
by the agent.

The third constraint is related to the second, and concerns
the relationship between subsequent states in the PSS task.
Because the PSS task consists of a sequence of independent
trials, the probability of a state st+1 following another state st
does not depend on the action taken at . Canonical RL algo-
rithms based on temporal difference rely on the environment
states to be concatenated in some way, since the update term
for the Q-value of an action taken at state st depends on the
Q-value of the agent’s actions at state st+1 For example, in
the Q-learning algorithm, the error term depends on the best
action available at state st+1.

Qst ,at ← Qst ,at +α[rt+1 + γmax(Qst+1,at+1 −Qst ,at )] (1)

Other algorithms, such as SARSA, similarly rely on the
measuring the Q-value of the action taken at state st , i.e.
Q(st+1,at+1). Since the trials are randomized, however, the
contribution of the term Qst+1,a is going to be statistically
identical, in the long term, across all states in the long-term.
For convenience, in these simulations we set this term to be
zero, so that the final learning equation reduces to:

68



Qst ,at ← Qst ,at +α[rt+1−Qst ,at )] (2)

Note that, under these conditions, the Q-value of an action
a converges to the probability of reward P(Rt) associated with
each corresponding option.

The participant’s policy in the PSS task was modeled as as
a Gibbs softmax action selection function:

P(ai) =
e

Q(ai)
T

∑ j e
Q(a j)

T

. (3)

Under this mechanism, the probability of the agent choos-
ing a given action increases proportionally with the action’s
value Q(s,a), divided by a parameter T , defined as the tem-
perature of the system. Higher values of T inject more noise
into the action selection process, causing action selection to
be less deterministic.

Standard RL Model
At relatively high values of T , where the estimated utility of
actions has a smaller effect on the action selection mecha-
nism, the RL model’s Choose and Avoid accuracies are ap-
proximately equal, revealing that the model has estimated the
value of choosing A, when presented with any option other
than B, as approximately equal to the value of not choosing
B, when presented with any option other than A. This is de-
sired model behavior–the model should estimate that choos-
ing A is equal to not choosing B. However, as a consequence
of the high level of noise in the action selection process, the
model has not estimated the actual value of these two actions
appropriately (relative to the value of all other options), as
indicated by the low Choose and Avoid accuracies 2.

On the other hand, when the value of T is low, and the
action selection process is largely dependent on the estimated
Q-values of the actions associated with the current state, some
alarming results occur.

Specifically, the model learns the value of of the desirable
options A, C, and E well, reflected as a increasing Choose
accuracy as T decreases (Figure 2, grey line). This is the
expected behavior of the model – as a deterministic action se-
lection process based on the estimated value of actions allows
exploration to suggest relatively “better” options, the model
quickly switches to exploiting them, learning their true values
well in the process 1.

However, when the Avoid accuracy of the model is in-
spected, it becomes clear that the model has learned the value
of some, but not all, options well. As the value of T begins
decreasing, the Avoid accuracy of the model does begin in-
creasing, as the Choose accuracy did. However, the model’s
Avoid accuracy actually begins to decrease (Figure 2, black
line) as T continues to decrease. This indicates that for lower

1Although here we report the results obtained using the softmax
function, the same results have been replicated with another com-
mon policy that balances exploration and exploitation, the ε-greedy
policy.

Figure 2: Performance of a canonical RL model in the PSS
task for various levels of temperature T . Grey: Choose accu-
racy; Black: Avoid accuracy; Blue: Mean accuracy.

values of T , the model does not sufficiently explore the “bad”
options (B, D, and F) during the training phase, and as a con-
sequence, does not value them appropriately. For higher val-
ues of T , the model does explore both bad and good options
approximately equally – however, it does not value neither
good nor bad options appropriately. Additionally, the maxi-
mum Avoid accuracy achieved at the point of inflection (less
than 70%) is much lower than the maximum Choose accu-
racy achieved by the model (which is when the value of T is
at a minimum; approximately 90%), as well as the Choose
accuracy at the point of inflection.

This pattern of Choose and Avoid accuracies over the range
of T values tested suggests the existence of an accuracy/bias
trade-off – to become more accurate on average for a given
option, the model must bias its action choices to exploiting
that option (in other words, the model increases the quality of
its estimates of the “good” options, while becoming more un-
certain about the value of the “bad” options). This effect can
be seen as tendency of RL agents to converge towards overly
optimistic estimates, which has been noted in the literature
(Hasselt, 2010). Note that this trade-off effect does not mani-
fest in human performance. To visualize the model’s trade-off
issues, the model’s estimate error (defined as the bias towards
choosing a given option, with respect to the probability of
avoiding the same option) can be plotted as a function of its
mean accuracy (Figure 3). An ideal PSS task agent would
be able to obtain unbiased estimates for every level of accu-
racy (the vertical dashed black line). However, as made clear
by Figure 3, the model’s estimate error increases as mean ac-
curacy increases–the model becomes more uncertain about its
“bad” options in order to do well when presented with “good”
options.

Another way in which this apparent accuracy/bias trade-off
can be demonstrated is by defining the model so that it learns
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Figure 3: Mean accuracy vs. Q-value estimate errors for
the three models examined in this paper. Solid lines indi-
cate the accuracy-error trade-off curves; dotted lines indicate
the maximum mean accuracy for each model. Blue: Standard
RL model; Red: BG-inspired model; Yellow: Anti-correlated
BG-inspired model.

the value of NOT choosing actions, rather than the value of
choosing actions. In other words, the model chooses to “not
choose” a given option, learning the value of such in the pro-
cess. In this case, as the value of T increases, Avoid accu-
racy decreases while Choose accuracy exhibits the inflection
behavior seen in Avoid accuracy under the original model.
Now, the model has learned how to navigate amongst “bad”
options–it knows the value of not choosing a given option,
and so it “doesn’t choose” the “bad” options more often as
T decreases. However, it does not learn about the value of
“good” options during the learning process.

Basal Ganglia-Inspired RL Model
Reinforcement learning is known to be a reliable method of
modeling the function of the basal ganglia (BG) system, a net-
work of subcortical nuclei including the striatum, globus pal-
lidus, substantia nigra, and subthalamic nucleus (Alexander
& Crutcher, 1990).

The striatum receives input from cortical structures, and
subsequently propagates the signal to later nuclei of the
BG through two distinct pathways, termed the “direct”
and “indirect” pathways (Smith, Beyan, Shrink, & Bolam,
1998). Of particular interest to neurological/psychological
research is the fact that the striatum also receives strong
dopaminergic (dopamine; DA) input from the substantia ni-
gra parscompacta (SNc). Dopaminergic signaling originat-
ing from the SNc has long been thought to reflect a neural “re-
ward” signal associated with internally-generated action and
external stimuli that the organism has learned is (or expects to
be) rewarding in some manner, and corresponds closely with
the prediction error signal utilized in RL methods (Schultz,
2000; Schultz, Dayan, & Montague, 1997). Additionally,

Figure 4: Overview of functional anatomy of the basal gan-
glia. The main basal ganglia nuclei are in grey; the arrows
indicate the major projections between nuclei. The indirect
pathway is shown in red, while the direct pathway is shown
in green.

dopaminergic input is a defining characteristic of the “direct”
and “indirect” pathways mentioned above – striatal neurons
that express D1 receptors (for which DA is an excitatory lig-
and) form the origin of the direct pathway, while those that
express D2 receptors (for which DA is an inhibitory ligand)
form the origin of the indirect pathway.

For the PSS task, although the standard RL model does
fairly well overall (approximately 77%), its performance does
not match that of human participants, especially when consid-
ering Avoid accuracy. As the model’s results demonstrate, it
learns well about one set of options (either the “good” op-
tions or the “bad” options, depending on if it is learning what
to choose or what to not choose, respectively), but it does not
do well at valuing all options appropriately at all values of
T . Ideally, the model could instead learn the values of choos-
ing an option and not choosing the alternative simultaneously,
allowing it to train once in order to appropriately value all
possible options. Superficially, there seems to be an obvi-
ous compatibility between the necessity for a RL model to
simultaneously estimate the value both the “chosen” and “not
chosen” alternatives within a PSS trial, and dopamine’s op-
posing influence on the direct and indirect pathways. Would
a model-free RL agent with two “action pathways” perform
any better than the standard RL model described above?

In order to implement the two-pathway concept, the Q-
learning agent described above was modified to include an
opposite set of “don’t” actions (¬A,¬B, . . . ,¬F), which,
when chosen by the agent, result in the selection of the other
option that they are paired with. Thus, this agent contains a
double set of actions and a stores a double set of Q-values; in
this, it is reminiscent of double Q-learning (Hasselt, 2010;
Van Hasselt, Guez, & Silver, 2016), an algorithm devised
to address the overly-optimistic estimates of the original Q-
learning algorithm (Watkins & Dayan, 1992).

The original set of actions (A,B, . . . ,F) can be conceptu-
alized as the set of actions available to be suggested by the
direct pathway (restricted by actions possible within the cur-
rent state), while the “antiset” can be conceptualized as the set
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of actions available to be suggested by the indirect pathway
(also restricted by the state). So, if the current trial allows for
actions A and B, and the agent selects the indirect pathway’s
action ¬A, the result is the selection of option B. However,
if the current trial allows for actions A and C, and the agent
selects ¬A, the result is the selection of option C.

Figure 5: Performance of the BG-inspired reinforcement
learning agent in the PSS task for various levels of temper-
ature T . Note that there is no difference in the Choose Grey
and Avoid Black accuracies.

Figure 5 shows that the simple addition of an “indirect
pathway” to the RL model results in a marked absence of
the bias observed in the standard RL model–as the value of
T decreases, both choose and avoid accuracies increase com-
mensurately. As such, the model no longer needs to “trade-
off” increasing the accuracy for one class of action by becom-
ing less confident in the valuations of the other class of ac-
tion. Instead, for every choice made, it simultaneously learns
both the value of the option chosen, and the value of not
choosing the alternative. However, note that the maximum
Choose and Avoid accuracies of the BG-plausible model do
not quite achieve the same level of accuracy as the standard
RL models–the uncertainty that the standard model had been
attributing to the option not chosen has now been distributed
across both available options. Figure 3 demonstrates that
overall, the BG-plausible model (red line) achieves essen-
tially the same level of global mean accuracy as the standard
RL model (blue line), but without the cost of increasing esti-
mate error.

Making the Model More Plausible
As described, this implementation of “direct” and “indi-
rect” pathways in the RL model does well at capturing the
competition between the direct and indirect pathways of the
BG, and alleviates the problem of increasing estimate error
with increasing accuracy. However, the BG-plausible model
still performs similarly to the standard RL model in terms

of global mean accuracy, indicating that although the BG-
plausible model has improved ability to estimate the value of
all options in the environment, this does not translate to im-
proved fitness within the environment. However, just as the
standard models were missing a crucial aspect of BG physiol-
ogy (the presence of dual pathways), the BG-plausible model
is missing a crucial feature of these dual pathways – the fact
that DA signaling has opposite effects on the direct (excita-
tion, mediated through D1 receptors) and indirect (inhibition,
mediated through D2 receptors) pathways.

To capture this aspect of BG neurodynamics, the BG-
plausible RL model was modified so that the learning algo-
rithm results in opposite changes for the actions to the two
pathways (an anti-correlated BG-plausible model). Specifi-
cally, if action A was selected and resulted in an update of it
Q-value of size δ, then the Q-value of the corresponding anti-
action ¬A would be updated by the quantity −δ. As in the
biological BG, this mechanism forces the values of one set of
actions to be anti-correlated to the values of the other set.

Figure 6 shows the results of simulations ran with this
model. At minimum values of T , the maximum mean Choose
and Avoid accuracies increase slightly (when compared to the
original BG-plausible model). Figure 3 shows that, similar to
the original BG-plausible model (red line), the mean accuracy
of the anti-correlated BG-plausible model (yellow line) in-
creases without a subsequent increase in estimate error. Addi-
tionally, the small increase in Choose and Avoid accuracies at
minimum values of T translate into significantly better overall
performance for the anti-correlated BG-plausible model.

Figure 6: Performance of the anti-correlated, BG-inspired
RL-learning model in the PSS task for various levels of tem-
perature T .

However, what is most striking about the anti-correlated
BG-plausible model is that at relatively large values of T
(where the action selection process is noisy), the model
performs much better than either the original BG-plausible
model, or the standard RL models. This is an indication that
the presence of the anti-correlated pathways in the second
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BG-plausible model bestow a greater resistance to internal
noise than the original BG-plausible model and standard RL
models possess. Figure 7 more clearly demonstrates this ef-
fect: across the range of tested values of T , the mean accura-
cies of the original BG-plausible model are almost identical
to the standard RL model. However, across the same range
of T values, the anti-correlated BG-plausible model performs
much better in almost every circumstance.

Figure 7: A direct comparison of the mean accuracy of
three RL models tested in this paper. Blue: Standard RL
model; Red: BG-inspired model; Yellow: Anti-correlated
BG-inspired model.

The model does not perform as well as the standard “orig-
inal” BG-inspired model only when the value of T is very
close to zero, indicating almost no noise in the action se-
lection process (an unrealistic assumption for biological sys-
tems). A similar analysis can be performed for the model’s
estimate error, as seen in Figure 3. This again shows that for
every tested value of T , there is little or no difference between
either BG-plausible model–the presence of the two pathways
allows each model to accurately estimate the value of both the
most rewarding (A, C, and E) and least rewarding (B, D, and
F) options. However, the standard RL model shows signifi-
cant estimation biases as the lowest levels of noise, when the
model’s performance is at a maximum.

Conclusions
In conclusion, the improved performance of the BG-plausible
RL models implies that psychological researchers looking to
model the functions of the basal ganglia could do well by
taking inspiration from the characteristics of the phenomena
they model, even when the modeling effort is largely theoret-
ical. The addition of opposed action sets, representative of
the well-known direct and indirect pathways within the basal
ganglia, allowed the original BG-plausible model to properly
estimate the value of both the “good” (relatively high proba-
bility of reward) and “bad” (relatively low probability of re-

ward) options available in the PSS task, eliminating the bias
towards “good” options displayed by the standard RL model.
Furthermore, by forcing the updates of the two action sets
to be anti-correlated (thereby mimicking the opposed excita-
tory/inhibitory effect of dopamine on the direct and indirect
pathways), the model displayed a marked resistance to greater
levels of noise within the selection mechanism.
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Abstract 

Building on earlier work extending Sigma’s mixed (symbols 
+ probabilities) graphical band to inference in feedforward 
neural networks, two forms of neural network learning – 
target propagation and backpropagation – are introduced, 
bringing Sigma closer to a full neural-symbolic architecture.  
Adapting Sigma’s reinforcement learning (RL) capability to 
use neural networks in policy learning then yields a hybrid 
form of neural RL with probabilistic action modeling. 

Keywords: cognitive architecture; neural-symbolic; neural 
networks; learning; reinforcement learning 

Introduction 
One of the greatest overall challenges in cognitive modeling 
is developing cognitive architectures that bridge the 
biological and cognitive bands – spanning, respectively, 100 
µs - 10 ms and 100 ms - 10 s – from Newell’s (1990) 
analysis of the time scales of human action. The boundary 
between these bands sits somewhere in the region of 10-100 
ms and conventionally divides symbolic from subsymbolic 
behavior, although the relationship between them may be in 
reality both subtler and more complex. 

One approach to this challenge provides distinct 
mechanisms for the two bands that can cooperate in 
prescribed ways (Sun, 2016); a second seeks the emergence 
of cognitive mechanisms from biological ones (Eliasmith, 
2013); and a third replaces components of existing cognitive 
architectures with neural models that yield similar results 
(Cho, Rosenbloom & Dolan, 1991; Jilk et al., 2008). 

The approach taken in Sigma (Rosenbloom, Demski, & 
Ustun, 2016a) has been to generalize the notion of a 
biological band to that of a graphical band – which in 
Sigma is based on factor graphs, a general form of 
graphical model, plus the summary product message-
passing algorithm (Kschischang, Frey & Loeliger, 2001) – 
that then implements the cognitive band.  Recently it was 
discovered, however, that with one simple enhancement to 
this graphical band it was possible to include feedforward 
neural networks, without yet learning, among the graphs 
supported (Rosenbloom, Demski & Ustun, 2016b).  This 
inspired a rethinking of Sigma’s graphical band to a broader 
graphical notion within which factor graphs became just one 
particularly useful specialization and neural networks 
another.  It also raised the possibility of a broader variation 
on the third approach mentioned above. 

This preliminary work is extended here to weight learning 
in feedforward neural networks.  A general form of 
parameter learning, via gradient descent on factor functions, 
was first implemented in Sigma for probability distributions 

(Rosenbloom et al., 2013) and then later extended to 
distributed vectors (Ustun et al., 2014).  These are both 
forms of generative learning that learn patterns of 
coactivation across variables, much as in Hebbian learning. 

Starting with this approach for distributed vectors, a 
variant of target propagation (Lee et al., 2015) has been 
implemented in Sigma via normal undirected (bidirectional) 
factor graphs, by backward propagating target values for the 
units’ outputs, and discriminatively learning weights from 
differences between target and actual outputs. However, 
issues with this approach led us also to implement 
backpropagation, the standard discriminative approach to 
neural learning (Rumelhart, Hinton & Williams, 1986), that 
is based instead on a unidirectional forward-backward arc. 

Both of these approaches reuse Sigma’s message passing 
for backward propagation and its gradient descent for 
parameter learning.  Backpropagation also leverages a 
variant of affective appraisal (Rosenbloom, Gratch & 
Ustun, 2015) to compute the error needed to initiate the 
backward pass.  The net result is functionally elegant neural 
learning that is largely based on new combinations of 
existing mechanisms rather than on new modules cut from 
whole cloth.  By extending Sigma’s graphical band in this 
way, neural networks are potentially usable wherever factor 
graphs already were used, including in long-term memory, 
perception and learning.  When combined with the earlier 
work on distributed vectors, a general neural-symbolic 
architecture begins to emerge that may, among other things, 
provide principled architectural guidance in how to combine 
deep learning (Goodfellow, Bengio, & Courville, 2016) 
with other critical cognitive capabilities. 

The core result in this article thus concerns the relatively 
abstract yet fundamental problem of building a functionally 
elegant bridge from a cognitive architecture to the biological 
band rather than specific matches to human data.  In service 
of this, after a review of Sigma and its earlier extension to 
feedforward neural networks, we will introduce neural-
network learning in Sigma, followed by experiments with 
classification and regression networks, and the leveraging 
of such networks in neural reinforcement learning. 

Sigma and Feedforward Neural Networks 
Sigma is composed of two distinct architectures, one for the 
cognitive band and one for the graphical band. In the 
cognitive architecture, knowledge is based on predicates for 
specifying relations over typed – numeric (discrete or 
continuous) or symbolic – arguments; and conditionals for 
specifying patterns over combinations of predicates. 
Functions may be included in predicates to provide 
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distributions over their arguments, and in conditionals to 
provide distributions over combinations of their variables. 

A segment of working memory exists for each predicate, 
as does also a segment of long-term memory if there is a 
predicate function.  An additional segment of long-term 
memory is also created for each conditional.  A pattern in a 
conditional may be a condition, which acts like a rule 
condition by matching to working memory; an action, 
which acts like a rule action by changing working memory; 
or a condact, which combines the effects of a condition and 
an action to yield bidirectional constraints on the contents of 
working memory.  Procedural memory is largely based on 
conditions and actions – i.e., rules – and declarative memory 
on condacts.  Decisions are made by selecting values from 
predicate arguments based on distributions over them. 

Figure 1, for example, displays two conditionals – each 
effectively a (non-symbolic) rule with an associated weight 
function – that together implement the two-layer neural 
network in Figure 2.  All argument types here are discrete 
numeric, but with three elements for Input and two each 
for Hidden and Output. The single argument (arg) in 
each pattern is specified here by variables – i, h, and o – 
with the function in each conditional being defined over its 
pair of variables.  The s in the conditionals’ actions denotes 
that a sigmoid/logistic function is to be applied before 
working memory is changed (other possibilities include r 
for RELU, t for tanh, e for exponential, and x for softmax).  
The one modification required to make this work in Sigma 
was extending to these functions its existing ability to 
include non-linear transformations in conditional patterns. 

This particular way of encoding a neural network in 
Sigma involves one conditional per layer, with the structure 
of the layers implicit in the argument types and conditional 
functions.  Although it is also possible to encode such 
networks via one conditional per link, with one element per 
type and a single weight per function, here the focus is on 
the more concise representation illustrated in Figure 1. 

Sigma’s compiler converts knowledge specified in its 
cognitive architecture into undirected bipartite graphs of 
variable and factor nodes – essentially factor graphs – in the 
graphical architecture.  Functions are stored in factor 
nodes.  Processing occurs via message passing – essentially 
the summary product algorithm – with each message 
encoding a distribution over the variables in the variable 
node on the link. Incoming messages are pointwise 
multiplied together at nodes, along with the node function at 
factor nodes, and then variables not needed in outgoing 

messages are summarized out, typically via either integral 
or maximum.  For conditions and actions, messages are 
passed in only one direction, from working memory for 
conditions and towards working memory for actions, 
whereas condact message passing is bidirectional.  Learning 
occurs by gradient descent at factor nodes, with gradients 
based on messages arriving from adjacent variable nodes. 

Target Propagation 
With target propagation, targets – that is, desired values – 
rather than errors are propagated backward over the 
network, with errors then computed locally at factor nodes 
based on subtracting computed outputs from desired 
outputs.  To support this, the unidirectional rules in Figure 1 
are converted to bidirectional constraints, with conditions 
and actions becoming condacts, as shown in Figure 3. 

The weights in the functions are initialized randomly, and 
then learned online from training examples.  The Neural 
attribute in the conditionals specifies that local 
discriminative learning is to be used here, with the gradient 
based on subtracting the output message for the specified 
variable (i.e., its computed value) from its input message 
(i.e., its desired/target value).  Learning from this error-
based gradient then follows the simplified additive form 
earlier developed for distributed vectors rather than the 
more complex form originally developed for distributions. 

Starting with the targets for the network’s output units, 
computing the targets and gradients for interior units 

CONDITIONAL C-Layer1-TP 
Condacts: (Input arg:i) 
          (Hidden s arg:h) 
Neural:h 
Function<i,h>: <Random in [-.1,.1]> 
 

CONDITIONAL C-Layer2-TP 
Condacts: (Hidden arg:h) 
          (Output s arg:o) 
Neural:o 
Function<h,o>: <Random in [-.1,.1]> 

 
Figure 3: Target propagation conditionals for two-layer 

weight learning. 

Figure 2: Two-layer neural network (adapted from 
http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture13.html). 

CONDITIONAL C-Layer1 
Conditions: (Input arg:i) 
Actions: (Hidden s arg:h) 
Function<i,h>: .2:<0,0>, .7:<0,1>, … 
 

CONDITIONAL C-Layer2 
Conditions: (Hidden arg:h) 
Actions: (Output s arg:o) 
Function<h,o>: 1.1:<0,0>, 3.1:<0,1>, … 

 
Figure 1: Conditionals for the network in Figure 2. 
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leverages the bidirectionality of condacts to send messages 
backward in the graph.  However, in contrast to backward 
messages in normal factor graphs, proper processing of 
these messages requires that the functions be inverted at 
factor nodes.  This is straightforward for the logistic 
function, as its inverse is simply the logit function: log(x/[1-
x]).  However, this does raise a deeper problem, in that the 
domain of this function is (0,1), whereas there is no 
guarantee that a target – particularly one generated inside 
the network – will fall in this range.  To work around this, 
backward messages at these nodes are truncated to [ε,1-ε]. 

A second problem arises at the factor nodes where the 
learned weight functions must be inverted. Rather than 
attempting to do this analytically, inversion is approximated 
empirically by gradient descent over the node’s backward 
output.  In particular, the product of the output error and the 
weight function is multiplied by a pseudo-learning rate (.05) 
and then added to the forward input message to yield the 
backward output message. 

Aside from the nonstandard approach to computing 
backward messages, the result is a form of target 
propagation that otherwise fits cleanly into normal factor 
graphs, including respecting the constraint that all messages 
over a link are distributions over the link’s variables. 

Backpropagation 
With backpropagation, a difference is computed only once, 
for the network’s output units, and propagated backward 
successively from there.  Sigma already supports an 
architectural desirability appraisal that calculates differences 
between distributions over goals and their associated states, 
and which is used in both guiding problem solving and 
directing attention.  What is needed for backpropagation is 
an analogous correctness appraisal that operates over point 
values rather than distributions. The error is then simply the 
difference between the output predicate’s specified 
target/goal and its computed value/state. 

Unlike with target propagation, however, the error cannot 
just be propagated backward over a bidirectional network, 
as that would violate the constraint that all of the messages 
on a link should be distributions over the values of the link’s 
variables.  In the forward direction the messages are 
(unnormalized) distributions – effectively activations – over 
variables, each of which corresponds to the set of units at 
one layer of the network.  Sending errors backward over 
these same links would be invalidly inhomogeneous. 

Instead, what has been done is to complement each 
unidirectional forward network with a unidirectional 
backward network over which errors are sent, with the 
appraisal at the end of the forward network serving as the 
nexus connecting it to the backward network.  Figure 4 
shows an abstract graph for how this all works. 

The left (green) path is the forward one, stretching from 
the perceptual buffer for the Input predicate up through 
two layers of weights to the Output predicate.  The 
squares are factor nodes, where the weight functions are 
stored, whereas the circles are variable nodes.  The two 

sigmoid transformations occur at additional factor nodes 
that are abstracted away in this figure.  The output of the 
forward path joins with the target values for the outputs at 
the appraisal of correctness. 

Figure 5 shows the 
forward conditionals 
for this.  They are like 
those in Figure 1 in 
having conditions and 
actions, and like those 
in Figure 3 in using 
random initial 
weights, but they 
replace the Neural 
attribute with the 
Vector attribute to 
signal that distributed-
vector gradients 
should be used in 
learning without target 
propagation’s 
gradient-based 
approach to backward 
message passing. 

The right (red) path 
in Figure 4 is the 
backward one.  It 
includes its own factor and variable nodes, but with crucial 
linkages added to the forward path.  The sigmoid nodes are 
also abstracted away here, but in the network compute the 
derivative of the logistic – x(1-x) – rather than its inverse. 

Figure 6 shows the corresponding backward conditionals.  
In general, backward predicates – such as Hidden*Back – 
are introduced that correspond to the forward ones, and 
conditions are swapped with actions.  However, there are 
slight variations for the first and last layers.  In the first 
layer, the backward propagation of information can stop at 
the weight function, rather than going all of the way back to 
the input units, so there is no action in C-Layer1-B.  In 
the last layer, backward propagation starts with the appraisal 
for the Output predicate – Output*Error – so the error 
is used directly rather than a new backward predicate. 

Learning occurs based on messages arriving at the factor 
nodes in the backward path, but the functions in these nodes 
are tied to those in the forward path – shown by the yellow 

CONDITIONAL C-Layer1 
Conditions: (Input arg:i) 
Actions: (Hidden s arg:h) 
Function<i,h>: <Random in [-.1,.1]> 
Vector: T 
 

CONDITIONAL C-Layer2 
Conditions: (Hidden arg:h) 
Actions: (Output s arg:o) 
Function<h,o>: <Random in [-.1,.1]> 
Vector: T 

 
Figure 5: Forward conditionals for two-layer 

backpropagation network. 

Figure 4: Structure of 
backpropagation for a two-layer 

network. 
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ellipses in Figure 4 – so that any changes made to the 
former are directly reflected in the latter.  This is enabled by 
the Forward-Conditional attributes in Figure 6, 
which specify the corresponding forward conditionals. 

In its simplest form, the gradient in backpropagation is 
the product of: (1) the learning rate; (2) the forward message 
at the weight function; (3) the output difference; and (4) the 
derivative of the sigmoid function. The forward message, as 
shown by the upward slanting (purple) unidirectional links 
from the forward path, is added automatically to the graph 
by the conditional compiler given the Forward-
Conditional attribute.  The output difference comes 
from above in the figure, as derived from the first condition 
in a backward conditional.  The computation of the 
derivative of the sigmoid, although abstracted away in the 
graph, arrives at the backward factor node via the downward 
slanting (blue) links from the forward path, based on the 
second condition in a backward conditional.  As with target 
propagation, the resulting gradient is handled in the simple 
additive manner developed earlier for distributed vectors. 

In contrast to target propagation, here the backward 
message out of the factor node – that is, the propagated 
output difference – is computed simply by message/function 
multiplication and summarization, as is standard in factor 
graphs.  There is one important caveat though.  As specified 
by the Exclude-Forward-Backward attribute, the 
purple message from the forward path is not included in this 
product, so the backward output is just the product of the 
output difference, the derivative of the sigmoid function and 
the weight function in the node.  This exception to the 
normal rule is motivated by backpropagation, but justified 
independently in factor graph terms by the fact that a 
message coming into a node on a bidirectional link should 
not be used in computing the reverse message on the same 
link.  Here there are two unidirectional links, but they 
effectively comprise a single logical bidirectional path. 

Basic Experiments 
Regression and classification problems provide two forms 
of standard benchmarks for learning with neural networks.  
The network in Figure 2, for example, defines a regression 
problem, where two functions are to be learned from the 

inputs, one for each output.  Small experiments with this 
network, starting with uniform weights, do show that both 
forms of propagation can learn weights in Sigma that yield 
outputs like those generated by the network in the figure.   
But what is really needed for verification is an investigation 
into how Sigma compares with standard packages. 

For this, we have compared Sigma with PyBrain, a 
Python machine learning library (Schaul et al., 2010), via 
three standard machine learning datasets: (1) Iris – 
https://archive.ics.uci.edu/ml/datasets/Iris – a classification 
problem with 3 classes; (2) Robot Arm – 
http://mldata.org/repository/data/viewslug/uci-20070111-
kin8nm/ – a regression problem that learns to predict the 
end effector position for an 8 link robot arm; and (3) MNIST 
– http://yann.lecun.com/exdb/mnist/ – a classification 
problem over the digits 0-9, based on 28x28 pixel images.  
Table 1 shows the static information for these datasets. 

Table 1: Input, hidden and output units; training and test 
instances; learning rate; and training epochs. 

 I H O Train Test λ Ep. 
Iris 4 10 3 138 12 .1 100 
Robot 8 100 1 6530 838 .01 100 
MNIST 784 30 10 10K1 10K .01 50 

Our experiments so far with target propagation have not 
yet yielded reasonable results on these datasets, most likely 
because of the truncation required for the logit.  So Table 2 
only shows backpropagation results.  The first and most 
critical result is that Sigma’s accuracy is indistinguishable 
from that produced by PyBrain with the same settings.  
Second, Sigma is slower, by up to a factor of ~100.  
Although a slowdown with a general architecture is not 
surprising, it should actually be possible to close this gap 
with a more efficient message representation plus SIMD (as 
in PyBrain) and GPU hardware.  It is also worth note though 
that these results are at most a factor of 2 slower than the 
human cognitive cycle time of ~50 ms, a factor that can be 
relevant when concerned with real-time cognitive models. 

Table 2: Accuracy (% correct for Iris and MNIST, RMSE 
for Robot Arm); seconds per epoch; and ms per decision. 
 Py A. Σ A. Py s/Ep. Σ s/Ep Σ ms/D 
Iris .917 .917 .082 .215 2 
Robot .173 .173 3.51 54.33 8 
MNIST .867 .867 9.8 1029.2 103 

Neural Reinforcement Learning 
Figure 7 shows a simple 1D grid in which reinforcement 
learning (RL) was initially explored in Sigma (Rosenbloom, 
2012).  The agent can move left or right in locations 1 
through 6, with locations 0 and 7 being forbidden boundary 

                                                             
1 Only the first 10K training examples are used for MNIST. 

CONDITIONAL C-Layer1-B 
Conditions: (Hidden*Back arg:h) 
            (Hidden s arg:h) 
Forward-Conditional: C-Layer1 
Exclude-Forward-Backward T 
Vector: T 
 

CONDITIONAL C-Layer2-B 
Conditions: (Output*Error arg:o) 
            (Output s arg:o) 
Actions: (Hidden*Back arg:h) 
Forward-Conditional: C-Layer2 
Exclude-Forward-Backward T 
Vector: T 

 
Figure 6: Backward conditionals for two-layer 

backpropagation network. 

Figure 7: 1D grid with agent, goal location and rewards. 
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regions.  When the goal (location 4, with a reward of 9) is 
reached the trial halts.  This has since been extended to 
larger 2D grids and to other tasks, but its simplicity provides 
a good starting point for exploring neural RL. 

Like neural learning, Sigma’s RL capability is not a 
distinct architectural module.  Instead it is deconstructed in 
terms of a set of conditionals plus learning of distributions 
over rewards, state utilities and action policies.  Neural RL 
in Sigma is much like this – Figure 8 – with similar 
conditionals and learning of the same quantities.  For 
example, the rightward arrow at the bottom of the figure 
indicates a conditional with a transition function (i.e., an 
action model) that predicts the location resulting from 
applying an operator, while the leftward arrow(s) at the top 
of the figure show the discounted backward propagation of 
the sum of the projected future utility and the reward for the 
predicted next state to the projected future utility of the 
current state and the policy for the current state and reward. 

Still, there are several key differences implied by the top-
level shift from distributional to neural learning that go 
beyond simply which form of learning is used.  First, 
because backpropagation is used, there is a forward-
backward arc of unidirectional conditionals (with functions) 
– as in Figure 4 – for each quantity to be learned, rather than 
a functional predicate or bidirectional conditional.  In Figure 
8, the forward paths are the upward black arrows from the 
location (L) to the reward (R), the projected future utility (P) 
and the policy (Q), whereas the backward paths are the 
downward red arrows back to L from correctness 
calculations (such as R*G	-	R).  The tied functions are shown 
as path-spanning squares.  A single-layer network – i.e., 
logistic regression – is used here due to the simplicity of the 
problem, but this can easily be extended to multiple layers.  

Second, because neural learning structurally distinguishes 
input from output in the network, implying an asymmetry 
that need not exist in distributional learning, the arguments 
for these quantities must appear in different predicates.  
Semantically, distributions may be symmetric, as when they 
are joint, or they may be asymmetric, as when conditional; 
but both can appear identically in a graphical model.  In 
distributional RL, conditional distributions are learned, but 
single symmetric predicates – such as Reward(x:x, 
value:r) – are used.  For neural RL this must be split in 
two, to yield Location(x:x) and Reward(value:r),	
as	shown	by	L	and	R	in	the	figure.   

Third, instead of learning a distribution over all possible 
output values, with sums (of rewards and projected future 
utilities) and products (by discount factors) computed by 
affine transforms, in neural learning a single value is 
learned, with sums resulting from adding the effects of 
multiple actions (top-right of Figure 8) and products from 
multiplying the effects of multiple conditions (d at top of the 
figure).  For example, in the distributional case the domain 
of the value argument for Reward includes all possible 
rewards, and the function over this and x is the conditional 
distribution over the value given the location.  Summing 
two such values occurs by translating the distribution, and 
discounting by scaling it.  In the neural case, there is instead 
only one domain element in the value argument, with the 
function over this element simply the learned reward, and 
computations on this occurring during pattern combination.  
Thus, not only is just a point value learned in the neural 
case, that value is implicit in the range of the learned 
function rather than explicit in the domain of the function, 
and computation with it occurs in a rather different manner. 

Fourth, because with distributional learning the arguments 
all exist within one predicate, potentially providing a full 
cross-product among their elements, a table is effectively 
acquired from which multiple answers can be extracted 
simultaneously via conditions with appropriate constants 
and variables.  With neural learning, extracting each answer 
requires either running the network once for each input, or 
including a distinct forward network for each possible input 
(but with tied functions across them).  This latter approach 
has been used in neural RL to access in parallel the rewards 
and projected utilities of the current state and the predicted 
next state.  In Figure 8, the separate paths for the next state 
are shown to the right, with function coloring indicating 
tying to the corresponding functions in the current path. 

Despite these differences, Figure 9 shows that the point 
values learned for the neural policy are still appropriate, 
with rightward movement preferred when to the left of the 
goal location and leftward movement when to its right.  This 
policy is averaged over ten runs of 500 trials each, with each 
trial starting at location 1 or 6, and all ending at location 4. 

Two other things are also worth noting from this simple 
neural RL experiment, which included an equivalent trial 

Figure 8: Diagram of neural RL in Sigma. 

Figure 9: Policy (Q) function learned via neural RL. 
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sequence for the distributional version.  First, The neural 
version was approximately five times faster than the 
distributional one in terms of time per decision – 12 versus 
62 ms/D – largely due to the smaller functions and messages 
possible when not using full distributions.  Second, both 
versions learn models of their actions distributionally – in 
terms of a conditional probability distribution over the next 
location given the current location and action – while 
engaged in RL.  The neural case thus illustrates the ease 
with which neural and distributional learning can combine 
in Sigma across subproblems in the same overall problem. 

Conclusion 
Building upon Sigma’s feedforward neural-network 
inference capability and its distributed vector learning 
capability, two forms of neural network learning – target 
propagation and backpropagation – have been implemented 
via a combination of extensions to existing architectural 
mechanisms and knowledge expressed as predicates and 
conditionals.  In both variations, the backward propagation 
of information occurs through message passing in Sigma’s 
graphical architecture rather than via special purpose 
mechanisms; and in backpropagation, the initial error 
computation occurs via a form of appraisal. 

For backpropagation we get results of comparable quality 
to, but slower than, a standard package; and we see the 
possibility of combining it with other capabilities, such as 
reinforcement learning and probabilistic action modeling. 
Neural network inference and learning are thus now 
becoming pervasively available within Sigma’s central 
cognitive cycle, a major step toward a full neural-symbolic 
architecture that is based on a functionally elegant bridge to 
the biological band.  In addition, although somewhat of a 
side point here, these extensions enable Sigma to perform 
discriminative learning over point values in general, 
whether for use in neural learning or not, to complement the 
existing ability of generative learning over full distributions. 

Future work includes extension to the full power of deep 
learning and the handling of temporal sequences via 
techniques such as LSTMs (Hochreiter & Schmidhuber, 
1997).  Also planned is further optimization and integrations 
of neural networks with other critical cognitive capabilities. 
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Abstract

The explore-exploit dilemma occurs anytime we must choose
between exploring unknown options for information and ex-
ploiting known resources for reward. Previous work suggests
that people use two different strategies to solve the explore-
exploit dilemma: directed exploration, driven by information
seeking, and random exploration, driven by decision noise.
Here, we show that these two strategies rely on different neu-
ral systems. Using transcranial magnetic stimulation to inhibit
the right frontopolar cortex, we were able to selectively inhibit
directed exploration while leaving random exploration intact.
This suggests a causal role for right frontopolar cortex in di-
rected, but not random, exploration and that directed and ran-
dom exploration rely on (at least partially) dissociable neural
systems.
Keywords: Explore-exploit, decision making, transcranial
magnetic stimulation, frontal pole

Introduction
In an uncertain world, adaptive behavior requires us to care-
fully balance the exploration of new opportunities with the
exploitation of known resources. Finding the optimal bal-
ance between exploration and exploitation is a hard compu-
tational problem and there is considerable interest in how
humans and animals strike this balance in practice (Hills et
al.,2015). Recent work has suggested that humans use two
distinct strategies to solve the explore-exploit dilemma: di-
rected exploration, based on information seeking, and random
exploration, based on decision noise (Wilson, Geana, White,
Ludvig, & Cohen,2014). Even though both of these strate-
gies serve the same purpose, i.e. balancing exploration and
exploitation, it is likely they rely on different cognitive mech-
anisms. Directed exploration is driven by information and is
thought to be computationally complex. On the other hand,
random exploration can be implemented in a simpler fashion
by using neural or environmental noise to randomize choice.

Of particular interest is the right frontopolar cortex (RFPC)
– an area that has been associated with a number of functions,
such as tracking alternate options (Boorman, Behrens, Wool-
rich, & Rushworth,2009), strategies (Domenech & Koech-
lin,2015) and goals (Pollmann,2016) that may be important
for exploration. In addition, a number of studies have im-
plicated the frontal pole in exploration itself (Badre, Doll,
Long, & Frank,2012;Daw, O’Doherty, Dayan, Seymour, &
Dolan,2006), although importantly, how exploration is de-
fined varies from paper to paper. In one line of work, ex-

ploration is defined as information seeking. Understood this
way, exploration correlates with FPC activity measured via
fMRI (Badre et al.,2012), suggesting a role for FPC in di-
rected exploration. However, in another line of work, ex-
ploration is operationalized differently, as choosing the low
value option, not the most informative. Such a measure of ex-
ploration is more consistent with random exploration where
decision noise drives the sampling of low value options by
chance. Defined in this way, exploratory choice correlates
with FPC activation (Daw et al.,2006) and stimulation and in-
hibition of RFPC with direct current (tDCS) can increase and
decrease the frequency with which such exploratory choices
occur (Raja Beharelle, Polania, Hare, & Ruff,2015).

Taken together, these two sets of findings suggest that lat-
eral FPC plays a crucial role in both directed and random ex-
ploration. However, we believe that such a conclusion is pre-
mature because of a subtle confound that arises between re-
ward and information in most explore-exploit tasks. This con-
found arises because participants only gain information from
the options they choose, yet are incentivized to choose more
rewarding options. Thus, over many trials, participants gain
more information about more rewarding options such that the
two ways of defining exploration, choosing high informa-
tion or low reward options, become confounded (Wilson et
al.,2014). This makes it impossible to tell whether the link
between FPC and exploration is specific to directed explo-
ration, random exploration, or whether it is general to both.

To distinguish these interpretations and investigate the
causal role of RFPC in directed and random exploration, we
used continuous theta-burst TMS (cTBS) (Huang, Edwards,
Rounis, Bhatia, & Rothwell,2005) to selectively inhibit RFPC
in participants performing the ‘Horizon Task’, an explore-
exploit task specifically designed to separate directed and ran-
dom exploration (Wilson et al.,2014). Using this task we find
that RFPC inhibition selectively inhibits directed exploration
while leaving random exploration intact.

Methods
Participants
31 healthy right-handed, adult volunteers (19 female, 12
male; ages 19-32) took part in the study. 6 participants were
excluded from the analysis due to chance-level performance
or for failure to to return for the second session leaving 25

79



participants (13 female, 12 male, ages 19-32) for the main
analysis. All participants were informed about potential risks
connected to TMS and signed a written consent. The study
was approved by University of Social Sciences and Humani-
ties ethics committee.

TMS procedure
All TMS was delivered in line with established safety guide-
lines (Rossi, Hallett, Rossini, Pascual-Leone, & Safety of
TMS Consensus Group,2009). There were two experimental
TMS sessions (targeting RFPC and vertex, as a control) and
a preceding MRI session in which a T1 structural image was
acquired in order to target frontal pole. During the TMS ses-
sions, resting motor thresholds were obtained first and then
the cTBS procedure took place. This involved 40 second of
stimulation at 50Hz at 80% resting motor threshold, a proto-
col that is thought to decrease cortical excitability for up to 50
minutes (Wischnewski & Schutter,2015). Participants began
the main task immediately after stimulation. The two experi-
mental sessions were performed with an intersession interval
of at least 5 days. All sessions took place at Nencki Institute
of Experimental Biology in Warsaw. Based on previous fMRI
work showing a link between FPC and exploration (Daw et
al.,2006;Badre et al.,2012), RFPC stimulation was targeted at
[x,y,z] = [35,50,15] in MNI (Montreal Neurological Institute)
space. Vertex corresponded to the Cz position of the 10-20
EEG system.

Behavioral task
We used our previously published ‘Horizon Task’ (Figure 1)
to measure the effects of TMS stimulation of RFPC on di-
rected and random exploration. In this task, participants play
a set of games in which they make choices between two slot
machines (one-armed bandits) that pay out rewards from dif-
ferent Gaussian distributions. To maximize their rewards in
each game, participants need to exploit the slot machine with
the highest mean, but they cannot identify this best option
without exploring both options first.

The Horizon Task has two key manipulations that allow us
to measure directed and random exploration. The first ma-
nipulation is the horizon itself, i.e. the number of decisions
remaining in each game. The idea behind this manipulation is
that when the horizon is long (6 trials), participants should ex-
plore more frequently, because any information they acquire
from exploring can be used to make better choices later on.
In contrast, when the horizon is short (1 trial), participants
should exploit the option they believe to be best. Thus, this
task allows us to quantify directed and random exploration
as changes in information seeking and behavioral variability
that occur with horizon.

The second manipulation is the amount of information par-
ticipants have about each option before making their first
choice. This information manipulation is achieved by us-
ing four forced-choice trials, in which participants are told
which option to pick, at the start of each game. We use these
forced-choice trials to setup one of two information condi-
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Figure 1: The Horizon Task. Participants make a series of
decisions between two one-armed bandits that pay out prob-
abilistic rewards with unknown means. At the start of each
game, ‘forced-choice’ trials give participants partial informa-
tion about the mean of each option. We use the forced-choice
trials to set up one of two information conditions: (A) an un-
equal (or [1 3]) condition in which participants see 1 play
from one option and 3 plays from the other and (B) an equal
(or [2 2]) condition in which participants see 2 plays from
both options. A model-free measure of directed exploration is
then defined as the change in information seeking with hori-
zon in the unequal condition (A). Likewise a model-free mea-
sure of random exploration is defined as the change choosing
the low mean option in the equal condition (B).

tions: an unequal, or [1 3], condition, in which participants
see 1 play from one option and 3 plays from the other option,
and an unequal, or [2 2], condition, in which participants see
two outcomes from both options. The two information condi-
tions allow us to quantify directed and random exploration in
a model-free manner (Figure 1). In particular, directed explo-
ration, which involves information seeking, can be quantified
as the probability of choosing the high information option,
p(high info) in the [1 3] condition, while random exploration,
which involves decision noise, can be quantified as the prob-
ability of making a mistake, or choosing the low mean re-
ward option, p(low mean), in the [2 2] condition. Crucially,
if p(high info) and p(low mean) increase with horizon, then
we infer that participants are using directed and random ex-
ploration.

Model-based analysis
While the model-free analyses are intuitive, the model-free
statistics, p(high info) and p(low mean), are not pure reflec-
tions of information seeking and behavioral variability and
could be influenced by other factors such as spatial bias and
learning. To account for these possibilities we performed
a model-based analysis using a model that extends our ear-
lier work (Wilson et al.,2014;Somerville et al.,2017). In this
model, the level of directed and random exploration is cap-
tured by two parameters: an information bonus for directed
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exploration, and decision noise for random exploration. In
addition the model includes terms for the spatial bias and to
describe learning. The model naturally decomposes into a
learning component and a decision component and we con-
sider each of these components in turn.

Learning component The learning component of the
model assumes that participants use a Kalman filter
(Kalman,1960) to learn a value for the mean reward of each
option. In particular, we assume that participants use a gener-
ative model of the task in which the rewards from each ban-
dit, rt , are generated from Gaussian distribution with a fixed
standard deviation, σr, and a mean, mi

t , that is different for
each bandit and can vary over time. The time dependence
of the mean is determined by a Gaussian random walk with
mean 0 and standard deviation σd . Note that this generative
model, assumed by the Kalman filter, is slightly different to
the true generative model used in the Horizon Task, which as-
sumes that the mean of each bandit is constant over time, i.e.
σd = 0. This mismatch between the assumed and actual gen-
erative models, is quite deliberate and allows us to account
for the suboptimal learning of the subjects. In particular, this
mismatch introduces the possibility of a recency bias (when
σd > 0) whereby more recent rewards are over-weighted in
the computation of Ri

t .
The actual equations of the Kalman filter model are

straightforward. The model keeps track of an estimate of both
the mean reward, Ri

t , of each option, i, and the uncertainty in
that estimate, σi

t . When option i is played on trial t, these two
parameters update according to

Ri
t+1 = Ri

t +
(σi

t+1)
2

σ2
r

(rt −Ri
t)

1
(σi

t+1)
2 =

1
(σi

t)2 +σ2
d
+

1
σ2

r

(1)

When option i is not played on trial t we assume that the es-
timate of the mean stays the same, but that the uncertainty
in this estimate grows as the generative model assumes the
mean drifts over time. Thus for unchosen option j we have

R j
t+1 = R j

t and (σ
j
t+1)

2 = (σ
j
t )

2 +σ
2
d (2)

When the option is played, the update equation for Ri
t is es-

sentially just a ‘delta rule’ (Rescorla, Wagner, et al.,1972),
with the estimate of the mean being updated in proportion
to the prediction error, rt −Ri

t . This relationship to the rein-
forcement learning literature is made more clear by rewriting
the learning equations in terms of the time varying learning
rate, αi

t = (σi
t+1)

2/σ2
r Written in terms of this learning rate,

equations 1 become

Ri
t+1 = Ri

t +α
i
t(rt −Ri

t) and
1
αi

t
=

1
αi

t−1 +αd
+1 (3)

where αd = σ2
d/σ2

r . The learning model has four free param-
eters: the noise variance, σ2

r , the drift variance, σ2
d , and the

initial values of the estimated reward, R0, and uncertainty in
that variance estimate, σ2

0. In practice, only three of these
parameters are identifiable from behavioral data, and we will
find it useful to reparameterize the learning model in terms
of R0 and an initial, α0, and asymptotic, α∞, learning rate.
In particular, the initial value of the learning rate relates to
σ0 and σr as α0 = σ2

0/σ2
r , while the asymptotic value of the

learning rate, which corresponds to the steady state value of
αi

t if option i is played forever, relates to αd (and hence σd
and σr) as

α∞ =
1
2

(
−αd +

√
α2

d +4αd

)
(4)

Decision component Once the payoffs of each option, Ri
t ,

have been estimated from the outcomes of the forced-choice
trials, the model makes a decision using a simple logistic
choice rule:

p(choose right) =
1

1+ exp
(

∆R+A∆I+B
σ

) (5)

where ∆R ( = Rle f t
t −Rright

t ) is the difference in expected re-
ward between left and right options and ∆I is the difference in
information between left and right options (which we define
as +1 when left is more informative, -1 when right is more in-
formative, and 0 when both options convey equal information
in the [2 2] condition). The three free parameters of the de-
cision process are: the information bonus, A, the spatial bias,
B, and the decision noise σ. We assume that these three de-
cision parameters can take on different values in the different
horizon and uncertainty conditions (with the proviso that A
is undefined in the [2 2] information condition since ∆I = 0).
Thus the decision component of the model has 10 free pa-
rameters (A in the two horizon conditions, and B and σ in the
4 horizon x uncertainty conditions). Directed exploration is
then quantified as the change in information bonus with hori-
zon, while random exploration is quantified as the change in
decision noise with horizon.

Model Fitting
Hierarchical Bayesian Model Between the learning and
decision components of the model, each subject’s behavior
is described by 13 free parameters, all of which are allowed
to vary between TMS conditions. These parameters are: the
initial mean, R0, the initial learning rate, α0, the asymptotic
learning rate, α∞, the information bonus, A, in both horizon
conditions, the spatial bias, B, in the four horizon x uncer-
tainty conditions, and the decision noise, σ, in the four hori-
zon x uncertainty conditions (Table 1, Figure 2).

We fit each of the free parameters to the behavior of
each subject using a hierarchical Bayesian approach (Lee
& Wagenmakers,2014). In this approach to model fitting,
each parameter for each subject is assumed to be sam-
pled from a group-level prior distribution whose parame-
ters, the so-called ‘hyperparameters’, are estimated using a
Markov Chain Monte Carlo (MCMC) sampling procedure.

81



Parameter Prior Hyperparameters Hyperprior

prior mean, Rτs
0 Rτs

0 ∼ Gaussian(µτ
R0

, στ
R0

) θτ
R0

= (µτ
R0
,στ

R0
)

µτ
R0

∼ Gaussian(50, 14)
στ

R0
∼ Gamma( 1, 0.001 )

initial learning rate, ατs
0 ατs

0 ∼ Beta(aτ
α0

, bτ
α0

) θτ
α0

= (aτ
α0
,bτ

α0
)

aτ
α0

∼ Uniform(0.1, 10)
bτ

α0
∼ Uniform( 0.5, 10 )

asymptotic learning rate, ατs
∞ ατs

∞ ∼ Beta(aτ
α∞

, bτ
α∞

) θτ
α∞

= (aτ
α∞
,bτ

α∞
)

aτ
α∞

∼ Uniform(0.1, 10)
bτ

α∞
∼ Uniform( 0.1, 10 )

information bonus, Aτshu Aτshu ∼ Gaussian(µτhu
A , στhu

A ) θτhu
A = (µτhu

A ,στhu
A )

µτhu
A ∼ Gaussian(0, 100)

στhu
A ∼ Gamma( 1, 0.001 )

spatial bias, Bτshu Bτshu ∼ Gaussian(µτhu
B , στhu

B ) θτhu
B = (µτhu

B ,στhu
B )

µτhu
B ∼ Gaussian(0, 100)

στhu
B ∼ Gamma( 1, 0.001 )

decision noise, στshu στshu ∼ Gamma(kτhu
σ , λτhu

σ ) θτhu
σ = (kτhu

σ ,λτhu
σ )

kτhu
σ ∼ Exp(0.1)

λτhu
σ ∼ Exp( 10 )

Table 1: Model parameters, priors, hyperparameters and hyperpriors.

rτshug aτshug

cτshug

Aτshu Bτshu στshuατs
∞

ατs
0

Rτs
0

θτhuA θτhuB θτhuσ
θτR0

θτα0
θτα∞

game g = 1:G

uncertainty condition u = 1:U

horizon condition h = 1:H

subject s = 1:S

TMS condition τ = { vertex, RFPC }

Figure 2: Graphical representation of the model. Each vari-
able is represented by a node, with edges denoting the depen-
dence between variables. Shaded nodes correspond to ob-
served variables, i.e. the free choices cτshug, forced-trial re-
wards, rτshug and forced-trial choices aτshug. Unshaded nodes
correspond to unobserved variables whose values are inferred
by the model.

The hyper-parameters themselves are assumed to be sampled
from ‘hyperprior’ distributions whose parameters are defined
such that these hyperpriors are broad. For notational conve-
nience, we refer to the hyperparameters that define the prior
for variable X as θX . In addition we use superscripts to refer
to the dependence of both parameters and hyperparameters
on TMS stimulation condition, τ, horizon condition, h, un-
certainty condition, u, subject, s, and game, g.

The particular priors and hyperpriors for each parameter
are shown in Table 1. For example, we assume that the prior
mean, Rτs

0 , for each stimulation condition τ and horizon con-

dition h, is sampled from a Gaussian prior with mean µτ
R0

and
standard deviation στ

R0
. These prior parameters are sampled

in turn from their respective hyperpriors: µτ
R0

, from a Gaus-
sian distribution with mean 50 and standard deviation 14, στ

R0
from a Gamma distribution with shape parameter 1 and rate
parameter 0.001.

Model fitting using MCMC The model was fit to the data
using a Markov Chain Monte Carlo approach implemented in
the JAGS package (Plummer et al.,2003) via the MATJAGS
interface (psiexp.ss.uci.edu/research/programs data/jags/).
This package approximates the posterior distribution over
model parameters by generating samples from this posterior
distribution given the observed behavioral data. In particular
we used 4 independent Markov chains to generate 4000
samples from the posterior distribution over parameters
(1000 samples per chain). Each chain had a burn in period
of 500 samples, which were discarded to reduce the effects
of initial conditions, and posterior samples were acquired
at a thin rate of 1. Convergence of the Markov chains was
confirmed post hoc by eye.

Results
RFPC stimulation selectively inhibits directed
exploration on the first free-choice
Model-free analysis Using the measures of directed and
random exploration, p(high info) and p(low mean), we
found that inhibiting the RFPC had a significant effect on
directed exploration but not random exploration (Figure 3A,
B). For directed exploration, a repeated measures ANOVA
with horizon, TMS condition and order as factors revealed
a significant interaction between stimulation condition and
horizon (F(1,24) = 4.96, p = 0.036). Conversely, a sim-
ilar analysis for random exploration revealed no effects of
stimulation condition (main effect of stimulation condition,
F(1,24) = 0.88, p = 0.36; interaction of stimulation con-
dition with horizon, F(1,24) = 1.24, p = 0.28). Post hoc
analyses revealed that the change in directed exploration was
driven by changes in information seeking in horizon 6 (one-
sided t-test, t(24) = 2.62, p = 0.008) and not in horizon 1
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(two-sided t-test, t(24) =−0.30; p = 0.77).
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Figure 3: Model-free analysis of the first free-choice trial
shows that RPFC stimulation affects directed, but not ran-
dom, exploration. (A) In the control (vertex) condition, in-
formation seeking increases with horizon, consistent with di-
rected exploration. When RFPC is stimulated, directed explo-
ration is reduced, an effect that is entirely driven by changes
in horizon 6 (* denotes p < 0.02 and ** denotes p < 0.005;
error bars are ± s.e.m.). (B) Random exploration increases
with horizon but is not affected by RFPC stimulation.

Model-based analysis Posterior distributions over the
group-level means of all 13 parameters in the model are
shown in Figure 4. The left column of Figure 4 shows the
posteriors over each parameter while the right column shows
the posteriors over the TMS-related change in each parame-
ter. Both columns suggest a selective effect of RFPC stimu-
lation on the information bonus in horizon 6.

Focussing on the left column first, overall the parameter
values seem reasonable. The prior mean is close to the gen-
erative mean of 50 used in the actual experiment, and the de-
cision parameters are comparable to those found in our pre-
vious work (Wilson et al.,2014). The learning rate param-
eters, α0 and α∞, were not included in our previous mod-
els and are worth discussing in more detail. As expected for
Bayesian learning (Kalman,1960), the initial learning rate is
higher than the asymptotic learning rate (95% of samples in
the vertex condition, 94% in the RFPC condition). However,
the actual values of the learning rates are quite far from their
‘optimal’ settings of α0 = 1 and α∞ = 0 that would corre-
spond to perfectly computing the mean reward. This suggests
a greater than optimal reliance on the prior (α0 < 1) and a
pronounced recency bias (α∞ > 0) such that the most recent
rewards are weighted more heavily in the computation of ex-
pected reward, Ri

t . Both of these findings are likely due to the
fact that the version of the task we employed did not keep the
outcomes of the forced trials on screen and instead relied on
people’s memories to compute the expected value.

Turning to the right hand column of Figure 4, we can
see that the model-based analysis yields similar result to the
model-free analysis. In particular we see a reduction (of about
4.8 points) in the information bonus in horizon 6 (with 99%
of samples showing a reduced information bonus in the RFPC
stimulation condition) and no effect on decision noise in ei-

initial learning rate, ,
0

0 0.5 1
asymptotic learning rate, ,

inf

information bonus (horizon 1), A

-10 0 10
information bonus (horizon 6), A

decision noise (horizon 1, [1 3]), <

decision noise (horizon 6, [1 3]), <

decision noise (horizon 1, [2 2]), <

0 10 20
decision noise (horizon 6, [2 2]), <

spatial bias (horizon 1, [1 3]), B

spatial bias (horizon 6, [1 3]), B

spatial bias (horizon 1, [2 2]), B

parameter value
-10 0 10

spatial bias (horizon 6, [2 2]), B

-0.5 0 0.5

-10 0 10

-10 0 10

parameter change
-10 0 10

-40 -20 0 20 40

difference
(RFPC - vertex)

0 50 100
prior mean, 7

0
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vertex RFPC

Figure 4: Model-based analysis of the first free-choice trial
showing the effect of RFPC stimulation on each of the 13
parameters. Left column: Posterior distributions over each
parameter value for RFPC and vertex stimulation condition.
Right column: posterior distributions over the change in each
parameter between stimulation conditions. Note that, because
information bonus, decision noise and spatial bias are all in
units of points, we plot them on the same scale to facilitate
comparison of effect size.

ther horizon in either the [2 2] or [1 3] uncertainty conditions
(with between 40% and 63% of samples below zero).

Discussion
In this work we used continuous theta-burst transcranial mag-
netic stimulation (cTBS) to investigate whether right fron-
topolar cortex (RFPC) is causally involved in directed and
random exploration. Using a task that is able to behaviorally
dissociate these two types of exploration, we found that inhi-
bition of RFPC caused a selective reduction in directed, but
not random exploration. To the best of our knowledge, this
finding represents the first causal evidence that directed and
random exploration rely on dissociable neural systems and
is consistent with our recent findings showing that directed
and random exploration have different developmental pro-
files (Somerville et al.,2017). This suggests that, contrary to
the assumption underlying many contemporary studies (Daw
et al.,2006;Badre et al.,2012), exploration is not a unitary
process, but a dual process in which the distinct strategies
of information seeking and choice randomization are imple-
mented via distinct neural systems.

Such a dual-process view of exploration is consistent with
the classical idea that there are multiple types of exploration
(Berlyne,1966). In particular Berlyne’s constructs of ‘specific
exploration’, involving a drive for information, and ‘diver-
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sive exploration’, involving a drive for variety, bear a striking
resemblance to our definitions of directed and random ex-
ploration. Despite the importance of Berlyne’s work, more
modern views of exploration tend not to make the distinc-
tion between different types of exploration, considering in-
stead a single exploratory state or exploratory drive that con-
trols information seeking across a wide range of tasks (Hills
et al.,2015;Kidd & Hayden,2015). At face value, such uni-
tary accounts seem at odds with a dual-process view of ex-
ploration. However, these two viewpoints can be reconciled
if we allow for the possibility that, while directed and random
exploration are implemented by different systems, their lev-
els are set by a common exploratory drive. More work will
be required to determine whether this is the case.

While the present study does allow us to conclude that di-
rected and random exploration rely on different neural sys-
tems, the limited spatial specificity of TMS limits our abil-
ity to say exactly what those systems are. In particular, be-
cause the spatial extent of TMS is quite large, stimulation
aimed at frontal pole may directly affect activity in nearby
areas such as ventromedial prefrontal cortex (vmPFC) and
orbitofrontal cortex (OFC), both areas that have been impli-
cated in exploratory decision making and that may be con-
tributing to our effect (Daw et al.,2006). In addition to such
direct effects of TMS on nearby regions, indirect changes
in areas that are connected to the frontal pole could also be
driving our effect. For example, cTBS of left frontal pole
has been associated with changes in blood perfusion in ar-
eas such as amygdala, fusiform gyrus and posterior parietal
cortex (Volman, Roelofs, Koch, Verhagen, & Toni,2011). In
addition the same study showed that unilateral cTBS of left
frontal pole is associated with changes in blood perfusion to
the right frontal pole. Indeed, such a bilateral effect of cTBS
may explain why our intervention was effective at all given
that a number of neuroimaging studies have shown bilat-
eral activation of the frontal pole associated with exploration
(Daw et al.,2006;Badre et al.,2012). Future work combining
cTBS with neuroimaging will be necessary to shed light on
these issues.
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Abstract 

Antisaccade performance in obsessive-compulsive disorder 
(OCD) is related to a dysfunctional network of brain 
structures including the (pre)frontal and posterior parietal 
cortices, basal ganglia, and superior colliculus. Previously 
recorded antisaccade performance of healthy and OCD 
subjects is re-analyzed to show greater variability in mean 
latency and variance of corrected antisaccades as well as  in 
shape of antisaccade and corrected antisaccade latency 
distributions and increased error rates of OCD patients 
relative to healthy participants. Then a well-established neural 
accumulator model of antisaccade performance is employed 
to uncover the mechanisms giving rise to these observed OCD 
deficits.  The model shows: i) increased variability in latency 
distributions of OCD patients is due to a more noisy 
accumulation of information by both correct and erroneous 
decision signals; (ii) OCD patients are almost as confident 
about their decisions as healthy controls; iii) competition via 
local lateral inhibition between the correct and erroneous 
decision processes, and not a third top-down STOP signal of 
the erroneous response, accounts for both the antisaccade 
performance of healthy controls and OCD patients. 

Keywords: Eye movements; superior colliculus; computer 
model; response inhibition; OCD. 

Introduction 
In the antisaccade paradigm participats suppress a reflexive 
saccade (error prosaccade) in favor of a saccade to a 
position in the opposite hemifield (correct antisaccade) 
(Hallett, 1978). At least two processes take place during this 
paradigm: (1) suppression (or inhibition) of an error 
prosaccade towards the peripheral stimulus, and (2) 
generation of a volitional saccade to the opposite direction 
(antisaccade) (Everling and Fischer, 1998; Munoz and 
Everling, 2004). The reaction times (RT) of error 
prosaccades, antisaccades and corrected antisaccades, the 
error rate, the percentage of corrected errors, the amplitude 
of antisaccades and error prosaccades, and the final eye 
position of correct responses are some of the measures of 
antisaccade performance (Hutton and Ettinger, 2006) with 
the error rate being the most reliable measure of it. A large 
study of healthy young males has reported that error 
prosaccade and antisaccade RTs are highly variable and the 
error rate is about 20-25% (Smyrnis et al., 2002; 
Evdokimidis et al., 2002).  

A recent experimental study reported an increase in error 
rates and in latency of corrected antisaccades in OCD 
patients (Damilou et al., 2016). The antisaccade 
performance deficit in OCD was speculated to be due a 

common dysfunctional network of brain structures including 
the (pre)frontal and posterior parietal cortices and superior 
colliculus. In this network there is a reported deficit in 
erroneous response inhibition control (Chamberlain et al., 
2005). 

Models of decision making involves a gradual 
accumulation of information concerning the various 
potential responses (Cutsuridis et al., 2007; Cutsuridis, 
2010; Noorani and Carpenter, 2013, 2014, Cutsuridis et al., 
2014; Cutsuridis, 2015, 2017). As soon as the target 
appears, a decision process starting at some baseline level 
T0 representing the prior expectation, begins to rise at a 
constant rate r until it reaches a threshold Th representing 
the confidence level required before the commitment to a 
particular course of action. Once Th is crossed, then a 
response towards the target is initiated. Response time (RT) 
is the time from the onset of the decision process till when 
the decision signal crosses Th. The rate of rise is sometimes 
assumed to vary randomly from trial to trial, with a mean μ 
and variance σ2 (Reddi and Carpenter, 2000). Changes in 
the baseline level of activity, the rate of rise or the threshold 
often result in changes in response latency. Prior 
expectation and level of activation of intention influence the 
baseline levels of activation. Carpenter (1981) proposed if 
the cumulative RT distribution is plotted against 1/RT on 
reciprobit scale, then the resulting straight line can be used 
as a diagnostic tool to assess the contribution of different 
factors influencing the experimental results. In a choice 
reaction time task such as the antisaccade paradigm, the 
various choices are represented by different straight lines. If 
the lines swivel by the threshold Th, then the mean and 
variances of the lines are unequal (Reddi and Carpenter, 
2000). If the lines are shifted by μ, then the slopes (1/σ) of 
the lines are equal, but their latency medians are not (Reddi 
et al., 2003). If the lines cross, then the slopes are not equal, 
but their medians are (Nakahara et al., 2006). 

In the present study, the Cutsuridis and colleagues (2014) 
model of antisaccade performance was used and extended 
into the realm of OCD. Previously recorded error rates and 
latencies of healthy and OCD participants (Damilou et al., 
2016; Evdokimidis et al., 2002) were re-analyzed to show 
that OCD patients display higher error rates, increases in 
mean latency and variance of corrected antisaccades, and 
greater variability in shape of antisaccade and corrected 
antisaccade latency distributions relative to healthy 
participants. The Cutsuridis and colleagues (2014) neural 
model was then employed to decipher the biophysical 
mechanisms that gave rise to these antisaccade performance 
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deficits in OCD. The model showed that i) increased 
variability in latency distributions of OCD patients was due 
to a more noisy accumulation of information by both 
(pre)frontal and posterior parietal centers representing the 
volitional (correct antisaccade) and reactive (erroneous 
prosaccade) decision signals, respectively, (ii) OCD patients 
were almost as confident about their decisions as healthy 
controls (i.e. the decision threshold level Th value is almost 
the same in healthy controls and OCD patients), and iii) 
competition between the correct and erroneous decision 
processes, and not a third top-down STOP of the erroneous 
response, accounted for the antisaccade performance of both 
healthy controls and OCD patients. 

 

Methods 

Experimental data 
Participants  
Two groups of individuals participated in the study: healthy 
controls and OCD patients. Both participant groups were 
extensively described in two previously published studies 
(Evdokimidis et al., 2002; Damilou et al., 2016).  

 
Antisaccade task 
The antisaccade task for the healthy controls and OCD 
groups was identical to the experimental protocol used in 
the Evdokimidis and colleagues (2002) study. Stimuli were 
delivered through a 17-inch computer screen (LCD) located 
1m away from the level of their eyes. Their head was 
immobilized using a chin rest. Subjects were informed 
about the requirements of the antisaccade task prior to its 
initiation. A calibration procedure was performed using a 
sequence of four saccadic eye movements, two to the left 
and two to the right of a central fixation target at an 
eccentricity of 10 deg. This process was then repeated with 
eye movements performed at 5 deg from the fixation point. 
During each antisaccade trial participants were instructed to 
fixate on a central fixation stimulus (white cross 0.3o x 0.3o 
of visual angle). After a variable period of 1–2 s, the central 
stimulus would disappear and a peripheral cue (the same 
white cross) would appear randomly at one of five positions 
(2–10o at 2o intervals), either on the left or on the right hand 
side of the central fixation stimulus. The subject was 
instructed to make a saccade in the opposite direction from 
the peripheral target. Each subject performed 90 antisaccade 
trials (5 trials for each cue position) in a randomized order. 
 
Eye movement recordings and analysis 
For the control and OCD groups, eye movements were 
recorded from the right eye using the IRIS SKALAR 
infrared device. Stimulus presentation and recording of the 
responses was accomplished with a program written in 
Turbo Pascal 7.0 for DOS. A 12-bit A/D converter was used 
for data acquisition (Advantech PC-Lab Card 818L). Eye 
movement data were sampled at 600 Hz and stored in a PC 
for off-line data processing. Data pre-processing of all 

recordings was conducted using an interactive PC program 
(created using the Test-Point CEC Software). Trials with 
artifacts (blinks, etc.) in the analysis period or with any type 
of eye movement in the period of 100ms before the 
appearance of the peripheral stimulus were excluded from 
the analysis (Evdokimidis, et al., 2002). In addition, only the 
trials with response latency within the window of 80–600ms 
were included in the analysis. Based on these criteria, 
individuals who performed at least 30 valid antisaccade 
trials were only retained.  
 
Metrics 
The experimental control and patient saccade reaction times 
(RTs) were divided into three behavioral categories: (1) 
error prosaccades, (2) antisaccades, and (3) corrected 
antisaccades. Saccade reaction time (RT) was defined as the 
time interval from the onset of peripheral stimulus till the 
time of the first detectable eye movement. Corrected 
antisaccade RT was as the time between an error prosaccade 
and the subsequent corrected antisaccade.  
 

Neural model 
The model and its mathematical formalism were extensively 
described in Cutsuridis et al. (2014) study. Briefly, the 
model was a one-layer neural network of the superior 
colliculus (SC) with firing rate nodes (Fig. 1A). The total 
number of nodes in the network was assumed to be 100. 
Short-range lateral excitation and long distance lateral 
inhibition was also assumed between all nodes in model. 
The lateral interaction kernel wij, which allowed for lateral 
interactions between model nodes, was a shifted Gaussian, 
which depended only on the spatial distance between nodes 
and it was positive for nearby nodes to the node activated by 
the input and negative for distant nodes (Fig. 1B).  

Model inputs were of two types: (1) a reactive input (Ir), 
which represented the error prosaccade decision signal and 
it was hypothesized to originate from the posterior parietal 
cortices (Munoz and Everling, 2004) and (2) a planned input 
(Ip), which represented the correct antisaccade decision 
signal and it was originated in the model from the frontal 
cortical areas (Munoz and Everling, 2004). In the model, 
each input was integrated in opposite model half according 
to the following way: if the reactive input activated a node 
and two of each nearest neighbors on each side in the left 
model half, then the planned input activated the mirror node 
and its two nearest neighbor nodes on each side in the right 
model half, and vice versa. The strengths of the external 
inputs were not equal (Ip > Ir). 

In the model, the reactive input was presented first at time 
t = 50 ms, followed by the planned input, which was 
presented 50 ms later (t = 100 ms). Experimental evidence 
(Becker, 1989) reported that the difference in the afferent 
delays of the reactive and planned decision signals (inputs) 
is close to 50 ms. Both inputs remained active for 600 ms. 
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Results 
As in the Cutsuridis and colleagues (2014) modeling study, 
to fit the experimental OCD data two model parameters 
were varied: the integration constant (τ) and the threshold 
(Th). In the model, the integration constant was a parameter 
which indicated how fast or how slow the neuron integrated 
information. A large value of τ allowed the neuron to 
integrate information slowly. A small value of τ allowed the 
neuron to integrate information fast.  

Figure 1. (A) Neural network model (reprinted with 
permission from Cutsuridis et al. (2014) study). (B) Lateral 
interaction kernels W for nodes 20 and 80 modelled as a 
shifted Gaussians (reprinted with permission from 
Cutsuridis et al. (2014) study). The kernels for nodes 20 and 
80 were excitatory for the nearby nodes and inhibitory for 
the distant ones. (C) Neuronal activities of all nodes in the 
network as a function of time (ms) (reprinted with 
permission from Cutsuridis et al. (2014) study). (D) 
Neuronal activity of nodes 20 and 80 as a function of time 
(reprinted with permission from Cutsuridis et al. (2014) 
study). Node 20 encoded the reactive input (error 
prosaccade) and node 80 encoded the planned input 
(antisaccade). When both activities crossed the threshold 
(dotted horizontal line), then an eye movement decision was 
made. In this case, an error prosaccade followed by a 
corrected antisaccade. 

Threshold was a model parameter that indicated how 
confident the model was to make a decision. When the 
neuronal activity crossed the threshold (see Fig. 1C), then a 
decision was made (i.e. an eye movement was generated).  

In each trial run the integration constant τ values of the 
two nodes that encoded the erroneous prosaccade and the 
antisaccade decision signals took values from two normal 
distributions with different means and standard deviations. 
The model was then run for 5000 trials. In each trial the 
error prosaccade, antisaccade and corrected antisaccade 
latencies were recorded. In the model the error prosaccade 
reaction time was estimated as the time interval from the 
onset of the reactive input until the time the activity of the  

Table 1: Model parameters 

node encoding the reactive input reached a preset threshold 
(Th) plus an additional 30 ms (Fig. 1D). The antisaccade 
reaction time was estimated as the time interval from the 
onset of the reactive input until the time the activity of the 
node encoding the planned input reached the threshold plus 
30 ms (Fig. 1D). The corrected antisaccade reaction time 
was the time interval from threshold crossing of the error 
node activity until the threshold crossing of the correct node 
activity.  

To simulate the error prosaccade, antisaccade and 
corrected antisaccade RT distributions as well as the error 
rates of both healthy controls and OCD participant groups, 
the integration constants τ (μ and σ) for both nodes that 
integrated the reactive (μ1 and σ1) and planned (μ2 and σ2) 
inputs were varied (see Table 1 for parameter values). In 
both conditions, the threshold value at which as a decision 
was reached (parameter Th in Table 1) was slightly higher in 
OCD patients than in healthy controls. The parameter values 
(μ1, σ1, μ2, σ2 and Th) that best fitted the experimental data 
were found via exhaustive search of the parameter value 
space. The remaining model parameter values were the 
same as in Cutsuridis et al. (2014) study. The simulated 
median RTs for the error prosaccades, antisaccades and 
corrective antisaccades were 214.72 ms, 262.72 ms and 
136.97 ms, respectively for the model controls and 207.84 
ms, 277.58 ms and 188.917 ms, respectively for the model 
patients. The simulated median RT values are very close to 
the experimental ones (see Table 2). The simulated 
coefficients of variation (CVs) for the error prosaccades, 
antisaccades and corrected antisaccades were 0.22, 0.19 and 
0.77, respectively for the controls and 0.32, 0.26 and 0.77, 
respectively for the patients. The simulated CV values are 
very close to the experimental ones (see Table 2).  

To compare the experimental and simulated error 
prosaccade, antisaccade and corrected antisaccade RT 
distributions for both groups (healthy controls vs OCD 
patients) I replicated the measures reported in Cutsuridis 
and colleagues (2014) study. First, I estimated the 
experimental average cumulative distribution for error 
prosaccades, antisaccades and corrected antisaccades  for 
b o t h  h e a l t h y  c o n t r o l s  a n d  O C D  p a t i e n t s  b y  
o r g a n i z i n g  t h e  RTs for each subject (control subject or 
OCD patient) in ascending order and calculating  the 
percentile values in increments of 5% (at 5, 10,15,20,...,95, 
100%). The 
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calculated percentile values from each subject were then 
averaged across each subject group (healthy controls or 
OCD patients) to give the experimental average group 
percentile values for error prosaccades, antisaccades and 
corrected antisaccades, which were then plotted in the 
average cumulative distribution (controls vs. patients) (see 
le f t  p lo ts  of  F igs  2A,  2B,  and 2C) .  Ratc l i f f  
(1977)  showed that the average distribution retains the 
basic shape characteristics of the individual distributions. 
Second, I repeated the same procedure for the error 
prosaccade, antisaccade and corrected antisaccade RTs of 
the virtual control and OCD subjects. The percentile values 
were then averaged across trial runs (5000 trial runs) for 
each subject group (virtual control subject vs virtual OCD 
patient) to give average subject group percentile values.  

Carpenter and Williams (1995) showed that if the 
cumulative RT distribution is plotted using 1/RT in a 
reciprobit plot, then the RTs will fall on a straight line. 
Thus, the average cumulative distribution data of RT (error 
prosaccade, antisaccade and corrected antisaccade) for the 
experimental and simulated controls and patients in a 
reciprobit plot were transformed (see left plots of Figs 2A, 
2B and 2C). A best-fitting regression line was computed for 
each behavioural category (error prosaccade, antisaccade 
and corrected antisaccade) in each simulated subject group 
(simulated controls vs simulated patients). An R correlation 
coefficient was estimated to assess how good fit was the 
regression line (simulated data) to the experimental data 
(open circles and dark squares). The model fit for each 
behavioural category and for subject group was excellent 
(correlation coefficient R was 0.99 for error prosaccades 
and antisaccades and 0.96 for corrected antisaccades in the 
healthy control group and 0.99 for error prosaccades and 
antisaccades and 0.97 for corrected antisaccades in the OCD 
group).  

Table 2: Simulated median saccade reaction times, their 
standard deviations and coefficients of variation (CV) for 
healthy controls and OCD patients. Bold values in 
parentheses correspond to experimentally estimated means 
of medians of saccade RTs, their standard deviations and 
CVs for controls and patients. 

Discussion 

What have learned from the model 
Previously recorded antisaccade performance of healthy and 
OCD subjects (Damilou et al., 2016) was re-analyzed to 
show greater variability in mean latency and variance of 
corrected antisaccades as well as variability in shape of 
antisaccade and corrected antisaccade latency distributions 
and increased error rates of OCD patients relative to healthy 
participants. A neural accumulator model of antisaccade 
performance is then employed to uncover the biophysical 
mechanisms giving rise to these observed OCD deficits. The 
major finding of this study is that the brains of OCD 
participants when they performing the antisaccade task are 
noisier than the brains of healthy controls. This noise is 
reflected mostly in the rate of accumulation of information 
(μ and σ) and less on the threshold level Th (confidence 
level required before commitment to a particular course of 
action). As we can see from Table 1 parameters μ1 and μ2 
(see Table 1 for values) are greater in control condition than 
in the OCD condition meaning that error prosaccades, 
antisaccades and corrected antisaccades are slower in OCD 
patients than in healthy controls. Similarly, σ1 and σ2 (see 
Table 1 for values) are smaller in healthy control condition 
than in the patient one, which means that error prosaccade, 
antisaccade and corrected antisaccade latencies are more 
variable in OCD patients than in healthy participants.  A 
physiological interpretation of the variability in the rate of 
accumulation of information (variability in parameter τ) is 
variability of NMDA based rate of evidence integration 
(Cutsuridis et al., 2007b). Experimental (Lewis, 2012) and 
computational (Kahramanoglou et al., 2008) studies have 
shown that NMDA hypofunction is implicated in 
neurodegenerative disorders such schizophrenia and OCD. 

On the other hand, the value of Th (threshold level) is 
almost the same in the OCD patient case as in healthy 
control one meaning that the OCD patients are as confident 
about their decisions as the healthy controls.  

Comparison with other models 
An important finding of this study is the absence of a third 
signal, inhibitory in nature, necessary to prevent the error 
prosaccade from being expressed when the antisaccade 
reached the threshold first. Such a third inhibitory signal has 
been speculated to exist by Noorani and Carpenter (2013, 
2014) in the form of a “stop-and-restart” mechanism that 
partially captures the antisaccade performance of healthy 
participants (see the Cutsuridis (2015, 2017) studies for 
constructive critiques of Noorani and Carpenter (2013, 
2014) models). In favor of the major finding of the current 
study that “competition via local lateral inhibition between 
the correct and erroneous decision processes, and not a third 
top-down STOP signal of the erroneous response, accounts 
for both the antisaccade performance of healthy controls and 
OCD patients” recent experimental evidence has 
demonstrated that lateral interactions within SC 
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intermediate segment are more suitable for faithfully 
accumulating subthreshold signals for saccadic decision- 
making (Phongphanphanee et al., 2014). Another 
experimental study by Everling and colleagues (2013) 
challenges the idea of a third suppressive/inhibitory 
influence (STOP signal in the Noorani and Carpenter 
model) of prefrontal cortical areas on reflexive, erroneous 
prosaccade generation in the antisaccade paradigm. 

Reciprobit plot as an insights tool of antisaccade 
performance 
It has been suggested that when data are plotted on the 
reciprobit plot, then the resulting straight line on the 
reciprobit plot could be used a diagnostic tool to assess the 
contribution of different factors influencing the 
experimental results (Carpenter, 1981). When straight lines 
swivel (Reddi and Carpenter, 2000), then the mean and 
variances of the lines are unequal. When the lines are 
parallel and shifted by μ, then the slopes (1/ σ) of the lines 
are equal, but their latency medians are not (Reddi et al., 
2003). When the lines cross, then the slopes are not equal, 
but their medians are (Nakahara et al., 2006). Along these 
lines we observed from the simulations that when the lines 
crossed (error prosaccade (right plot of Fig. 2A) and 
antisaccade (right plot of Fig. 2B)), then the median values 
of error prosaccade and antisaccade latencies are not 
significantly equal. When the lines are parallel and shifted 
(corrected antisaccades; right plot of Fig. 2C), then the 
median latencies are significantly different. 
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Figure 2. (Left) Experimental average cumulative RT 
distribution for controls (white empty circles) and patients 
(black squares). (Right) Reciprobit plots of the experimental 
(white empty circles and black squares) and simulated (solid 
lines) average cumulative RT distributions. The x-axis 
represents 1/RT and it has been reversed so that RTs 
increase to the right. Instead of 1/RT values the axis is 
marked with the corresponding RT values. The fitted lines 
correspond to linear regression (simulated data) on the 
experimental data (white circles and black squares) of each 
distribution (controls vs. patients). (A) Error prosaccades. 
(B) Antisaccades. (C) Corrected antisaccades. 
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Abstract 

We present an extension of a schema-based architecture for 
action selection, where competition between schemas is 
resolved using a variation of a neuroanatomically detailed 
model of the basal ganglia. The extended model implements 
distinct learning mechanisms for cortical schemas and for 
units within the basal ganglia. We demonstrate the 
functionality of the proposed mechanisms by applying the 
model to two classic neuropsychological tasks, the Wisconsin 
Card Sorting Task (WCST) and the Probabilistic Reversal 
Learning Task (PRLT). We discuss how the model captures 
existing behavioural data in neurologically healthy subjects 
and PD patients and how to overcome its shortcomings.  

Keywords: schema theory; basal ganglia; Wisconsin Card 
Sorting Test, Probabilistic Reversal Task 

Introduction 
Schema theory is a framework based on the idea that 
behaviour in many areas depends on abstractions over 
instances, i.e., schemas. In these abstract terms, schema 
theory is very general and has been applied to different 
domains such as memory and motor control. Norman and 
Shallice (1980) applied the theory in the domain of routine 
sequential action. Their theory proposes that action schemas 
work in a cooperative or sequential fashion, but also that 
they compete with each other for activation. 

While schema theory is helpful in representing functional 
interactions in the action-perception cycle, it is not 
committed to a specific neural implementation. However, at 
the neural level the basal ganglia have been proposed as a 
candidate for resolving competition between schemas in 
order to carry out action selection (Redgrave et al., 2001). In 
part this is because of their recurrent connections with the 
cortex. 

In the first part of the paper we present a schema-theoretic 
model of action selection where competition between motor 
and/or cognitive schemas is resolved using a variation of a 
neuroanatomically detailed model of the basal ganglia. We 
assume that schemas are cortically represented but that 
schema selection (i.e., selecting one from a set of competing 
schemas) is facilitated by the basal ganglia. The latter 
receive multiple signals from the cortex but they are 
presumably ‘content-free’. In other words, unlike their 
corresponding cortical structures, they are not directly 
related to the stimulus features. Following the description of 
the model we propose how learning may occur in the model 
subsequent to reward, introducing two parameters that drive 

separate learning mechanisms. Then, we proceed to present 
two examples of the model applied to two tasks: Wisconsin 
Card Sorting Task (WCST) and a variant of the 
Probabilistic Reversal Learning Task (PRLTv). We discuss 
computational results, the model fit with existing empirical 
data, and experiments that could further validate the model. 

The Extended Schema-Theory Model 
At a general level, the model can be understood as two 
systems or layers of computational units that feed signals to 
each other – a cortical system and a basal ganglia system. 
Each unit within the cortical system corresponds to to a 
schema, and represent a meaningful action or thought. 
Cortical units are connected with other cortical units and to 
the basal ganglia (BG) units (Fig. 1). These BG units take 
input from all cortical units at the same level of abstraction, 
generate an output signal, and feed it back to the same 
cortical units. The BG units serve to resolve competition 
between same-level schemas via the feedback loop between 
cortical and BG layers. Below, we will introduce two 
applications of the model – to the Wisconsin Card Sorting 
Test (WCST), which makes use of two distinct sets of 
schemas (cognitive and motor schemas) each with their own 
BG layer, and to a variation of the Probabilistic Reversal 
Learning task (PRLTv), which makes use of motor schemas 
only. First we describe the general model more fully. 

Computation 
Computation is carried out in both the cortical units and in 
the five nuclei which make up the basal ganglia (Fig. 2; for 
a complete description of the basal ganglia functional units 
see Alexander, 1990) according to the equations given 
below. In all cases, ui represents the entry signal to the unit, 
ai is the result of integration along the time domain, and oi 
represents the output of the unit. The function σ computes 
the sigmoid function of the input, ensuring output values are 
bounded between 0 and 1. Sigmoid functions have a fixed 
slope but variable threshold. Varying the threshold of 
cortical or striatal units alters the way competition between 
units is carried out, and can be considered a function of 
phasic dopamine present in the circuit.1  

1 In a separate simulation it has been shown that the level of 
external dopamine from the substantia nigra pars compacta (SNpc) 
unit can be simulated by varying the threshold of the saturation 
curve in the striatum (βsma), without making use of an additional 
unit. 
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Action selection is not the product of higher order 
schemas alone. Environmental features directly excite lower 
order schemas and can lead to selection of those schemas in 
the absence of higher order control. An excessive ratio or 
difference between bottom-up and top-down excitation of 
the lower-level schemas produces behaviours akin to those 
seen in some frontal patients (Cooper & Shallice, 2000).  

Cortical Units (Motor or Cognitive) 

u! ⟻ o!"#,! + o!"#$,! 

a! t ⟻ ∂ ∙ a! t − 1 + (1 − ∂)u! t − 1

o! ⟻ σ a!

Striatum (D1 and D2): 

u! ⟻  o!"#,! 

a! t ⟻ ∂ ∙ a! t − 1 + (1 − ∂)u! t − 1

o! ⟻ σ a!"#$%/!",!

Subthalamic nucleus: 

u!"#,!(t)⟻  w!"#o!"#,! +  w!"#_!"#o!"#,! (t − 1) 

a!"#,! t ⟻ ∂ ∙ a!"#,! t − 1 + (1 − ∂)u!"#,! t − 1

o!"#,! ⟸ σ a!"#,!

Globus Pallidus (External Segment): 

u!"#,! ⟸  w!"#_!"# o!"#,!
!

+  w!"#$%_!"#o!"#$%,!  

a!"#,! t ⇐ ∂ ∙ a!"#,! t − 1 + (1 − ∂)u!"#,! t − 1

o!"#,! ⟸ σ a!"#,!

Globus Pallidus (Internal Segment): 

u!"#,! t ⟻  w!"#_!"# o!"#,!
!

+  w!"#_!"#o!"#,! t − 1

+  w!"#$%_!"#o!"#$%,! t − 1

a!"#,! t ⟻ ∂ ∙ a!"#,! t − 1 + (1 − ∂)u!"#,! t − 1

o!"#,! ⟻ σ a!"!,!

Thalamus: 

u! ⟻  o!"#,! 

a! t ⟻ ∂ ∙ a! t − 1 + (1 − ∂)u! t − 1

o! ⟻ −σ a!

Cortical and Basal Learning Mechanisms 
The general model includes weighted connections from 
cortical schema units to basal ganglia units, and weighted 
connections from basal ganglia units back to cortical units. 
We assume that the weights are learned by separate reward-
based mechanisms (for reasons given below). When the 
system is provided with positive (ri = +1) or negative (ri = 
−1) feedback after a response, two separate mechanisms 
control how the system adapts to new stimuli. We assume 
the following teaching signals are produced by rewards and 
activations: 

𝑅! = 𝑟! − 𝑎! (1) 

𝑆!  =  𝑟! − 2!!!!! ∙ 𝑟!

!!!

! ! !

 
(2) 

In Eq. 1 𝑟! represents the reward assigned to the ith schema 
and 𝑎!  represents the activation of the ith schema, t 
represents the trial and T is the total number of trials. Eq. 2 
encodes the ‘surprise’ of the reward and assigns a greater 
value to the most recent trials, effectively implementing a 
form of ‘memory’. 

The teaching signals produce a variation in the threshold 
of the schema and basal ganglia unit saturation curves, βctx 
and βstr, respectively, as given by Eq. 4 and 5. Uniformly 
distributed noise ζ in the range [-0.1,0.1] is also added to 
prevent deadlock.  

Figure 1: Schematic of the basal ganglia. Legend: Cortex-
Thalamic complex (CTX-THAL), Striatum (STR), 
Subthalamic nucleus (STN), Globus Pallidus 
Internal/External Segment (GPi and GPe) 

Figure 2: Schematic of the subunits that compose the basal 
ganglia. Legend: Cortex-Thalamic complex (CTX-THAL), 
Striatum (STR), Subthalamic nucleus (STN), Globus 
Pallidus Internal/External Segment (GPi and GPe) 
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𝛽!"#,! ⟻  𝜂!(𝛽!"#,! − 𝜖!"#𝑅!  +  𝜁) (4) 

𝛽!"#,! ⟻  𝜂!(𝛽!"#,! − 𝜖!"#𝑆!  +  𝜁) (5) 

𝜂! 𝑥 =
 1, 𝑥 >  1
𝑥, 0 < 𝑥 < 1
0, 𝑥 <  0

 
(6) 

The left arrow indicates assignment2. Eq. 4 describes the 
change of threshold of the saturation curve of BG units 
following reward. Decreasing 𝛽!"# augments the probability 
of the ith schema being selected. Eq. 5 describes the change 
of threshold of the saturation curve of cortical units 
following reward. Unlike Eq. 4, the value of the 𝛽!"# is 
centred around 𝛽!"#,! (set to 0.5 in all simulations). Eq. 6 is 
a limiting function which ensures that the thresholds remain 
within range.  

Overall, this set of equations attempts to capture the 
division of labour between cortical structures and the basal 
ganglia. The two distinct learning signals that drive the 
overall model behaviour represent the direct (mesocortical, 
through the ventral tegmental area) and indirect 
(nigrostriatal, from the substantia nigra pars compacta) 
influence of dopamine to the task representation in the 
frontal circuits. Both equations are a function of reward, but 
while Eq. 4 slowly alters the probability of a channel to 
being selected, Eq. 5 energises schemas when surprise (the 
difference between expected and given reward) is high and 
therefore promotes fast dishabituation. Cognitive control 
emerges from the interaction between the two mechanisms 

Theoretical Commitments 
The core theoretical commitments of the model are the 
presence of cortical schemas, the presence of the basal 
ganglia that act as a content-free action selection device, and 
two different learning mechanisms for cortical schemas and 
the basal ganglia. Provided that the learning functions are 
both based on reward, the analytical form of the functions 
constitute peripheral hypotheses. Other peripheral 
hypotheses include the value of the threshold above which a 
schema is considered selected and the task-dependent 
number of schemas. The model can also be extended to 
accommodate other kinds of computation, such as that 
carried out in the cerebellum.  

Model Applied to the WCST 

Task and model description 
In the Wisconsin Card Sorting Task (WCST), participants 
are required to sort a series of cards into four categories 
based on binary (i.e., correct/incorrect) feedback (Heaton, 
1981). Each card shows one, two, three or four shapes, 

2 In assignment the value at the current trial is equal to a 
function of the same variable in the previous trial. Initial values are 
0.5 plus a minimal amount of noise to randomise the first response. 

printed in one of four colours, and there are four shapes 
(triangle, star, cross, circle). It is therefore possible to sort 
cards according to colour, number or shape. To succeed, 
participants must match each successive card with one of 
four target cards (which show One Red Triangle, Two 
Green Stars, Three Yellow Crosses, Four Blue Circles), and 
use the subsequent feedback to discover the appropriate 
rule. However, once they have discovered the rule (as 
indicated by a succession of 10 correct sorts), the 
experimenter changes the rule without notice. The task 
yields a number of dependent measures, including the 
number of rules obtained (with a deck of fixed size – 
typically 64 or 128 cards), the number of cards correctly 
sorted, the number of perseverative errors (i.e., errors where 
the participant persists in using a rule despite having 
received negative feedback) and the number of Set Loss 
errors (i.e., errors where the participant fails to stick with a 
rule despite positive feedback). 

The model comprises three cognitive schemas and four 
motor schemas (see Fig. 3).3 Cognitive schemas represent 
the selection rules (Sort by Colour, Sort by Number, Sort by 
Shape) while the four motor schemas represent the acts of 
putting the stimulus card below each of the four target cards. 
All schemas send signals to the basal ganglia units at the 
same level of hierarchy (Fig. 4), but only cognitive schemas 
implement the learning mechanisms outlined in Eq.4-6. 
Each schema has an activation level that varies over time as 
a function of input from various sources. Motor schemas are 
fed by cognitive schemas, and the signal from the cognitive 
layer to motor layer is rule-dependent. If, for instance, the 
stimulus card displays three red circles, the shape schema 

3 Source code for the simulation, including a complete list of 
parameters and their values, is available from the first author on 
request. 

Figure 3: Schematic of the model, not showing competition 
between schemas. Cognitive schemas (top row) send 
signals to the motor schemas (bottom row). 

Figure 4: Schematic of the competition between schemas. 
The basal ganglia units compute the amount of inhibition 
that each schema receives given the activation of the 
others. Only cognitive schemas are shown here. 
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will excite the fourth motor schema (Four Blue Circles), the 
number schema will excite the third motor schema (Three 
Yellow Crosses), and the colour schema will excite the first 
motor schema (One Red Triangle). 

Motor schemas are also fed by environmental cues which 
depend on the stimulus card features. Thus, when cognitive 
schemas are not strong enough to influence motor schemas, 
stimulus features alone may drive action selection. 
Feedback is given after each trial, and it drives learning 
within the cognitive schemas and their BG units as outlined 
in the previous section (Eq. 4 and 5). Learning in the motor 
schemas and their associated BG units is unnecessary in the 
WCST because randomisation of stimuli prevents a 
preference for a card position from being formed. A typical 
run of the task is shown in Fig. 5. 

Simulation and results 
We simulated 20 subjects for each value of the learning 
rates εctx and εstr, for a total of 560 subjects and recorded the 
relevant dependant variables (Fig. 6). Total Errors (TE), 
Perseverative Errors (PE) and Non Perseverative Errors 
(NPE) are all monotonic functions of εstr and εctx while Set 
Loss (SL) errors show a more erratic pattern. The value of 
the analysed dependent variables is a function of both εstr
and εctx, but also of external activation of cognitive and 
motor schemas.  These signals act as modulators between 
internal and external attentional process. An excessively 
low/high value of cognitive/motor external activation 
signals produces a general increase in all kind of errors. 
Varying these parameters produces performance more 
similar to behaviour exhibited by some frontal patients, 
where environmental cues drive action selection (Cooper & 
Shallice, 2000). Once baseline values for external 
excitations are set, we observe how the values of dependent 
variables fit data from young, older adults, and Parkinson’s 
Disease (PD) patients. PD results from reduced 
dopaminergic input to the striatum (Siegelbaum et al., 2000) 
and it is therefore appropriately modelled by lower values of 
εstr. 
Total and Perseverative Errors Empirical data from PD 
patients (Paolo et al., 1996) performing the WCST show 
that perseverative errors are significantly greater in non-
demented PD patients than in older controls, while the 
difference between older controls and younger subjects is 
not significant. The model successfully simulates this 
pattern of Total Errors and Perseverative Errors in healthy 
and PD patients with a set of values for (εstr , εctx) of (0.15, 
0.08) and (0.05, 0.01), respectively. Thus, consistent with 
the neurophysiological hypothesis, PD patient performance 
may be accounted for by lower values of εstr.  
Set Loss and Non-Perseverative Errors Set loss errors 
have a different profile from all the other errors, suggesting 
the presence of distinct cognitive mechanisms underlying 
these and other errors. Empirical data from young, older 
controls and PD patients (Paolo et al., 1996) show that SL 
errors are not significantly greater in non-demented PD 
patients than in older controls. Paolo et al. (1996) also report 

that older controls tend to produce more SL errors than 
younger participants but the difference does not reach 
significance (t(89)=1.89, p  =.062). 

The model does not adequately capture the prevalence of 
set loss errors, but this limitation might be overcome by 
choosing parameters more carefully. In addition, it is 
necessary to further analyse how these errors arise in both 
the model and in experimental data. SL errors are relatively 
rare, and do not occur in all attempts at the task (either in 
human participants or in the model). Further work is 
required to see whether a more sensitive measurement of SL 
errors is needed. 

Discussion 
Simulating the WCST yields an adequate fit with empirical 
data from healthy young controls and PD patients and it 
explains how perseveration errors might arise from an 

Figure 5: Cognitive schema activation in a typical run of 
the WCST. The red, green and blue lines represent the 
colour shape and number schemas, respectively. Black 
vertical lines have been plotted every 4 trials.  

Figure 6: Plot of WSCT simulation results. Dependent 
variables shown are Total Errors (TE), Perseverative 
Errors (PE), Set Loss Errors (SL) and Non-Perseverative 
Errors (NPE). The dashed horizontal black lines, the red 
lines, and the blue lines represent the mean values of the 
dependent variables for young participants, older 
participants, and PD patients, respectively.
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impaired selection mechanism, in which rewards do not 
update quickly enough, or from an impaired schema 
activation mechanism, where surprising results are not 
powerful enough to trigger quick selection of a new rule. 
The dissociation between Set Loss and Perseverative Errors, 
which reflects the dissociation between distractibility and 
perseveration (Kaplan et al., 2006), is also replicated. 
Nevertheless, the model fails to fully explain the difference 
in Set Loss and Non-Perseverative Errors in healthy and PD 
populations. It is also unclear whether the difference 
between young and older control can be modeled with the 
two learning parameters alone (on the assumption that the 
trend reported by Paolo et al., 1996, indicates a real effect).  

Model Applied to the PRLTv 

Task and model description 
Here, we apply the general model to a variant of the 
Probabilistic Reversal Learning Task (PRLTv; Cools et al., 
2002). In this task, two stimuli are presented on each trial, 
but only one is the correct one. However, feedback is 
unreliable – the subject receives feedback that is correct 
only 80% of the time. After 40 trials the stimulus that 
receives the reward (i.e., positive feedback) is reversed. 
Again, feedback is correct 80% of the time. In the version of 
the task modelled here (unlike the standard experimental 
task), we assume that the subject is not told that feedback 
will be probabilistic. This allows us to test only stimulus-
reward contingencies in absence of any super-ordinate rule. 

To succeed at the task, subjects have to be able to stick to 
the first rewarded stimulus despite spurious feedback, but 
they also have to be able to reverse the choice and not 
perseverate when the contingency changes. The task is 
modelled as a simple stimulus-reward association, without 
higher order rules controlling the selection of lower 
schemas. The structure of the PRLTv thus is simpler than 
the one used for the WCST, and consists of only two 
cortical schemas with their associated basal ganglia units 
(Fig. 7). A typical run of the model is shown in Fig 8.  

Simulation and results 
We simulated 25 subjects for two values each of εctx and εstr 
for a total of 100 subjects and display the percentage error 
across the 80 trials (Fig. 9). Two performance measures are 
calculated: Errors to Criterion (ETC) are evaluated by 
counting the number of trials the subject takes to score 8 
consecutive correct responses (ignoring spurious feedback). 
Consecutive-Perseverative (CP) errors are evaluated by 
counting how many trials from the reversal trial (41st trial) 
the subject takes to select the correct new response. Both 
variables are non-normally distributed, and therefore the 
Kruskal-Wallis H statistic has been used to test differences 
among the groups. 
Errors To Criterion In the acquisition stage, ETCs are not 
significantly different, irrespective of the parameters (Fig. 
10.). On the reversal stage, increasing εstr from 0.4 to 0.6 
inverts the ETC trend in the function of εctx. The difference 
in ECT is significant in both the low εstr value (H(1) = 4.10, 
p = 0.043) and the high εstr value (H(1) = 5.56, p = 0.018). 
Consecutive Perseverative A low value of εstr generally 
impairs the model by increasing perseveration (CP = 2), but 
only for lower values of εstr (H(1) = 11.68, p < 0.001) 
(Fig.11). 

Discussion 
In the standard version of the Probabilistic Reversal 
Learning Task (e.g., Swainston et al., 2000), for which data 
from PD and age-matched controls is available, subjects are 
encouraged to stick with a rule even if it is occasionally 

Figure 7: Model diagram for the PRLTv. Unlike the 
WCST, there are no higher order schemas that control the 
two lower order schemas. 

Figure 8: Typical run of the PRLTv. The blue line 
represents the schema activation while the red line and the 
dashed black line represent βctx and βstr, respectively.  

Figure 9: Plots of the model performance in PRLTv for 
different values of εstr and εctx across all trials. Points 
represent the error percentage for each stage of the task 
(acquisition and reversal) 
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wrong. This effectively creates a high-level schema. The 
variant of the task considered here deliberately avoids this 
and constitutes the lower-level version of the WCST, where 
only low-level schemas (those schemas that receive direct 
excitation from the environment) are activated and acted 
upon by the learning mechanisms. However, because of this 
difference in task instructions the model cannot be evaluated 
against the available data. The above results are therefore 
predictions that remain to be evaluated by contrasting the 
performance of PD patients and age-matched controls). Our 
model aims to capture computationally how a simple 
stimulus-reward association changes in terms of learning 
mechanisms that act directly on lower level schemas. 
Therefore the model needs to be experimentally validated 
with the adjusted behavioural task.  

General Discussion 
The general model is successful in replicating several 
empirical results and in reflecting the dissociation between 
distractibility (exemplified by SL errors in the WSCT and 
ETC in the PRLTv) and perseveration (exemplified by PE 
in the WSCT and ETC in the PRLTv). Limitations in 
accounting for experimental data in the WCST may be 

overcome by studying how subjects produce NPE and SL 
errors and whether the model accurately reflects this. 
Conversely, matching experimental data in the PRLTv 
requires running new experiments where instructions are 
reduced to a minimum. Ultimately, the model’s purpose is 
to bridge the concept of neurotransmission, that acts as a 
medium to increase computational power, and the 
meaningful unit of action or thought. Thus, while the 
theoretical core assumptions seem to be capable of 
reproducing at least two tasks adequately, peripheral 
hypotheses on the learning mechanisms may require 
revision to achieve a better fit and to strengthen the link 
with the neurobiology.  
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Abstract

The Turing-inspired Meta-morphogenesis project begun in
2011 was partly motivated by deep gaps in our understand-
ing of mathematical cognition and other aspects of human and
non-human intelligence and our inability to model them. The
project attempts to identify previously unnoticed evolutionary
transitions in biological information processing related to gaps
in our current understanding of cognition. Analysis of such
transitions may also shed light on gaps in current AI. This
is very different from attempts to study human mathematical
cognition directly, e.g. via observation, experiment, neural
imaging, etc. Fashionable ideas about “embodied cognition”,
“enactivism”, and “situated cognition”, focus on shallow prod-
ucts of evolution, ignoring pressures to evolve increasingly
disembodied forms of cognition to meet increasingly com-
plex and varied challenges produced by articulated physical
forms, multiple sensory capabilities, geographical and tempo-
ral spread of important information and other resources, and
“other-related meta-cognition” concerning mental states, pro-
cesses and capabilities of other individuals. Computers are
normally thought of as good at mathematics: they perform
logical, arithmetical and statistical calculations and manipu-
late formulas, at enormous speeds, but still lack abilities in
humans and other animals to perceive and understand geo-
metrical and topological possibilities and constraints that (a)
are required for perception and use of affordances, and (b)
play roles in mathematical, and proto-mathematical, discov-
eries made by ancient mathematicians, human toddlers and
other intelligent animals. Neurally inspired, statistics-based
(e.g.“deep learning”) models cannot explain recognition and
understanding of mathematical necessity or impossibility. A
partial (neo-Kantian) analysis of types of evolved biological
information processing capability still missing from our mod-
els may inspire new kinds of research helping to fill the gaps.
Had Turing lived long enough to develop his ideas on morpho-
genesis, he might have done this.
Keywords: Archimedes; Euclid; Kant; geometry; topology;
vision; evolution; biological information processing; limita-
tions of current computational models evolution as a blind
mathematician.

Introduction
There are deep gaps in current AI models, related to gaps in
theories of cognition, especially mathematical cognition (de-
spite impressive mathematical powers of computers). The
Turing-inspired Meta-Morphogenesis project, proposed in
2011 asks new questions about evolution of biological in-
formation processing, identifying what needs to be explained
and possible types of explanation corresponding to differ-
ent evolutionary stages.1 Large sums are being spent in the
hope that more training on more data can diminish, and even-
tually remove, those gaps, guided by research on how hu-
mans acquire the relevant competences and on brain mech-
anisms involved, but the research focuses on a subset of the

1References have been deleted in this version for lack
of space, but can be found, with links to online papers,
at http://www.cs.bham.ac.uk/research/projects/cogaff/
sloman-iccm17.pdf

relevant competences and mechanisms, leaving much unex-
plained. E.g. research that focuses on numerical compe-
tences, ignores geometric and topological competences, that
are arguably more fundamental, in ways that I’ll explain later.
Moreover research on statistics based learning cannot explain
discoveries of necessary truths, e.g. geometrical, topological
and arithmetic truths.

Many psychologists also ignore important mathematical
features of competences being investigated, because they
don’t clearly distinguish empirical from non-empirical learn-
ing. For example, not all psychologists studying number cog-
nition seem to realise that full understanding of cardinal and
ordinal numbers depends on grasping that one-to-one corre-
spondence (bijection) is a transitive and symmetric relation
(and therefore also reflexive), and moreover those properties
are necessary (i.e. non-contingent) features of bijection, but
not logical or definitional features. This was pointed out by
Kant in 1781, though he knew of no explanatory mecha-
nisms. My 1962 thesis (now online) defended Kant against
common criticisms, but I had never heard of AI then and I
lacked the opportunity to base a defence on computational
modelling, a gap I began trying to fill in my 1978 book.
Four decades later there still seem to be no working AI sys-
tems able to replicate the discoveries in topology, geome-
try and arithmetic, made by ancient mathematicians such as
Archimedes, Euclid, Zeno and others, nor the closely related,
hard to observe, discoveries unwittingly made by pre-verbal
human toddlers,2 or even squirrels and nest-building birds.

A rich sample of approaches to the problems of character-
ising and explaining numerical competences can be found in
a BBS survey by Rips et.al., including commentaries and re-
sponses. Unfortunately influences on individual mathemat-
ical development now are so diverse, including biological,
physical, cultural, educational and individual differences, and
so little attention is paid to the problem of specifying imple-
mentable mechanisms, as opposed to verbal descriptions of
what brains or minds do, that the research is inevitably frag-
mentary and inconclusive and proposed theories lack the pre-
cision required to guide designs for testable working models.

Piaget drew attention to many combinations of compe-
tence and incompetence displayed by children, and produced
evidence that most did not understand that 1-1 correspon-
dence is a transitive relation until they are five or six years old.
It is also symmetric, unlike many transitive relations children
learn about (e.g. “taller than”, “heavier than”). Unfortunately,
calling this learning about “conservation” misleadingly sug-

2Like the 17.5 month old child apparently testing a conjecture
in 3D topology here http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/toddler-theorems.html#pencil
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gests that understanding preservation of numerosity across
spatial rearrangement is related to understanding that matter
is conserved when rearranged. One-to-one correspondences
can hold between completely abstract entities that have no
matter to conserve. This is obvious to mathematicians, but
perhaps not all developmental researchers.

One common Piagetian test for understanding numerosity
tends to use examples of two types (e.g. apples, bananas)
and supertype (e.g. fruit) in situations where there are (e.g.)
more apples than bananas and children are asked whether
there are more apples or more fruit. At a certain age they tend
to say “more apples”. However, there is usually no attempt
to check that they have understood the question as intended.
I found that if a child is asked to count the apples, then to
count the fruit, then asked the same question, the correct an-
swer is given. Some then generalise, without help, to other
cases, e.g. giving the right answer to the question “Are there
more open windows or more windows?” asked of a build-
ing with far more windows open than shut. This suggests
that some children interpret the original question wrongly. I
don’t know if any psychologist has tried tampering with Pi-
aget’s experiment in this way. However, Margaret Donaldson
showed in 1978 that slight variants of some of Piaget’s other
experiments, produced significantly different results.

My aim is not to criticise Piaget or his (often less well in-
formed) followers but to draw attention to problems of em-
pirical research not based on deep theories. Is there a deep
theory in neuroscience capable of explaining what sort of late
developing neural mechanism can change the powers of a
child’s brain so that the necessary transitivity and symmetry
of one-to-one correspondence is grasped? This can be viewed
as a topological problem about two networks of connections,
e.g. a network formed by setting up a one-to-one correspon-
dence between elements of sets A and B, and one between
elements of B and C. We can see (How?) that if A, B and
C are disjoint sets, the two sets of links can always be con-
catenated to form one-to-one relationships between A and C.
Does anyone have a theory as to how brain mechanisms can
detect, or even represent, the impossibility of any counter-
example – i.e. the fact that the transitivity is a necessary
truth? The work of mathematical logicians (e.g. Frege, Rus-
sell and others) allows the transitivity to be proved (tediously)
in a formal logical system, but it was understood by ancient
mathematicians (and young learners), centuries before those
formal proof methods had been discovered. What happened
in their brains when the necessity of transitivity of bijection,
i.e. the impossibility of counter examples, was grasped?

Mathematical discoveries are not concerned with empirical
or contingent regularities but with necessary connections and
impossibilities (e.g. internal angles of a planar triangle neces-
sarily sum to half a rotation, and it is impossible for any num-
ber to be the largest prime). How could we check that a brain
mechanism is able to represent and use these notions of ne-
cessity and impossibility, which are features of mathematical
discoveries, but not empirical discoveries? The answer will

depend in part on a good theory of the semantics of modal
concepts – often taken nowadays to be “possible world” se-
mantics.3 However, ancient mathematicians did not need this
notion of a possible world: they were exploring compatible
and incompatible collections of relationships in this world,
often represented diagrammatically (Sloman 1962). .

So mathematical (as opposed to empirical) discoveries
about numbers, lines, angles, etc. require use of (alethic)
modal concepts (e.g. “possible”, “impossible”, “necessarily
true”, “necessarily false”). Standard ways of acquiring gen-
eral information by observing instances and collecting statis-
tics, cannot yield such mathematical knowledge, since that re-
quires more than observed regularities. Perhaps many badly
taught learners never get beyond memorising what they have
been taught, but that’s not what needs explaining.

I am not aware of any computational model that is able to
replicate not only those arithmetical and geometrical discov-
eries but also other topological impossibilities that children
seem to understand without mathematical training, for exam-
ple that two solid rings cannot become linked and unlinked
simply by being moved continuously, or that a shoe-lace can-
not be pulled out of lace-holes twice as fast by pulling both
ends at once. Nor does any AI model that I know of explain
this. There is no evidence that AI theorem provers that draw
conclusions from logical axioms can model what a young
child, or an intelligent squirrel or crow does, or what ancient
mathematicians did over 23 centuries ago, long before dis-
covery of modern logic and algebra, and Descartes’ use of
arithmetic to model geometry.

Kant pointed out that ancient mathematical discoveries
are characterised by being (a) non-empirical, (b) non-analytic
(i.e. not derivable from definitions using only logic) and (c)
non-contingent – the truths and falsehoods are instances of
necessity and impossibility as explained in my thesis. This
does not imply that mathematicians are infallible: they can
and do make mistakes of various sorts, though they often dis-
cover and correct their mistakes, as demonstrated in Proofs
and Refutations by Lakatos.

The 20th Century discovery that physical space is non-
Euclidean is often regarded as demonstrating that Kant was
wrong about mathematical knowledge, whereas it merely
shows that some of his examples were wrong. He could have
used the discovery that a subset of Euclidean geometry can
be extended in different ways, yielding Euclidean and non-
Euclidean geometries, as an example of a mathematical truth
that is synthetic, necessarily true and not empirically based.
Non-Euclidean geometries had been discovered before the
1919 eclipse showed that physical space was not Euclidean.
Such discoveries add to what needs to be explained by neuro-
science and modelled by AI.

Regarding arithmetic: is there a neural theory explaining
how brains generate and control parallel sequences of actions
required in counting operations of various sorts, with differ-
ent stopping conditions depending on the task and various

3https://en.wikipedia.org/wiki/Possible world
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ways in which counting errors can be detected and be cor-
rected, as described in Ch. 8 of CRP?4 An explanatory mech-
anism should explain how counting can be applied, via dif-
ferent senses and movable body parts, to events, continuous
processes (e.g. rotations, changes of direction, skin strokes,
or sound oscillations), to static objects, and to abstract enti-
ties (e.g. numbers, words), along with self-monitoring to de-
tect departures from strict one-to-one correspondence. More-
over, some mathematical discoveries can be made by noticing
novel features of such thinking processes, e.g. repeated pat-
terns. I suspect no known neural mechanism explains how re-
flection on processes produced by number generating mecha-
nisms can lead to the concept of a non-terminating sequence,
and then to an understanding that there are infinitely many
numbers. What allows a child to understand “never stops”?

Another discovery that I believe is beyond current AI the-
orem provers was known to Archimedes and others: namely
adding the neusis construction to Euclidean geometry, allow-
ing motion of a straight-edge with two marks, makes it easy
to trisect an arbitrary angle, which is impossible in standard
Euclidean geometry.5 What would a neural explanation of
such a discovery process look like? Finding brain regions that
are active during such discoveries does not tell us how brains
encode universally quantified semantic content, or how they
derive new semantic contents. It cannot be assumed that such
discoveries are based on applying rules of modern logic (e.g.
predicate calculus) to logical axioms, in part because modern
logic was not available to ancient mathematics: it was mostly
created recently by thinkers like Boole, Peano, Frege, Rus-
sell and others. Moreover, Euclidean geometry was not ax-
iomatised using modern logic until 1899, by David Hilbert.
Trisection was proved impossible in that system, so discov-
ery of a construction that trisects an arbitrary angle must have
used a different mode of spatial reasoning. I suspect ancient
discoveries in geometry and topology were closely related to
the need to identify positive and negative affordances, shared
with other intelligent species. But evolution added some ad-
ditional, unknown(?) discovery or reasoning mechanism in
humans.

Meta-cognitive mechanisms, allowing internal processes
based on previous competences to become objects of reflec-
tion during their performance seem to be required for some
new mathematical insights. Many practical tasks can make
use of multiplication and division, e.g. making sure that ev-
ery member of a group has two shoes, or dividing N tasks be-
tween M people. Reflecting on this leads to the discovery that
some sets with N members can be divided into M equal sets,
but not into M+1 equal sets, and eventually that some num-
bers cannot be divided into any number of equal sets: they
are primes, already familiar to Euclid. It is not clear how the
impossibility is recognized, as opposed to mere repeated fail-
ure. Statistics-based learning mechanisms could not discover

4Revised edition online at http://www.cs.bham.ac.uk/
research/projects/cogaff/crp#chap8

5For more detail see http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/trisect.html

impossibilities and necessary truths: those are not degrees of
probability. (However mathematical theorems about proba-
bilities are necessary truths, not probabilistic assertions!)

Piaget (who had studied Kant, Frege and Russell) under-
stood some of the problems. His two posthumous books were
on possibility and necessity, though he lacked the tools re-
quired to solve our problems.

Mathematical meta-cognition
Metacognitive reasoning processes seem to have enabled Eu-
clid (or a predecessor) to discover and prove that there cannot
be a largest prime number, so there must be infinitely many
prime numbers. How did evolution produce mechanisms with
such capabilities, and how do they work? Perhaps a “du-
plicate then differentiate” transition in our evolutionary his-
tory somehow produced meta-cognitive capabilities, allow-
ing comparisons of modes of thinking on different occasions,
leading to important insights concerning differences between
reliable and unreliable reasoning, enabling introspected rea-
soning processes to be described and modified while they
were being performed, and allowing mistakes of reasoning
to be discovered and eliminated, or successful modes to be
combined to form more complex modes.

Such meta-cognitive abilities would also have social con-
sequences, e.g. allowing strategies discovered during self-
debugging to be later taught to others.6 Every good math-
ematics teacher knows that learning to detect mistakes in
reasoning is a deep part of mathematical education. More
generally, the extension of meta-cognition from direct self-
observation to indirect other-observation can help with effec-
tive other-debugging processes. I don’t know if anyone has
an appropriately deep theory of how brains encode and ma-
nipulate self- and other- directed meta-cognitive information.
(Could Barnden’s ATT-Meta system be a start?)

Can we get clues from biological evolution?
If a bird is seen to be flying around in an elliptical orbit, it
will not be because the bird’s motion is caused by elliptical
physical motion of something outside the bird, as rotary mo-
tion of a leaf in a river whirlpool is caused by the motion of
the water. The bird will have information about its environ-
ment (e.g. about possible prey, a possible nesting site, or a
predator approaching its nestlings) and identified needs (e.g.
to get food, to find a good place for a nest, to find nesting ma-
terial, to distract a predator, etc.) It will also need the ability
to increase or decrease speed and change direction. Depend-
ing on the circumstances, the bird’s motion will use energy
(either in its muscles, or in wind or updrafts, or gravity), con-
trolled on the basis of constantly changing information, to
produce motion with intended results. There may or may not
be additional meta-cognition (self-awareness). Instead of be-
ing moved solely by external physical forces, as planets and

6However, it’s a fashionable mistake in some circles to assume
that mathematical discovery necessarily requires social uses of lan-
guage, just as its a fashionable mistake to assume physical embodi-
ment plays a role in all mathematical reasoning.

99

http://www.cs.bham.ac.uk/research/projects/cogaff/crp#chap8
http://www.cs.bham.ac.uk/research/projects/cogaff/crp#chap8
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html


clouds are, the bird has information-processing mechanisms
that control its motion. E.g. it can select some information
items rather than others then select and execute an action,
then switch to a different goal and different action. Evolu-
tion changes the amount and variety of information that can
be acquired, manipulated, stored and used, and the variety of
types of needs and goals that can drive such processes.

Long before humans existed, various mathematical struc-
tures and relationships, some but not all numerical, were in-
volved in control processes, including increasing or decreas-
ing turn angles, speed, height, joint angles, forces applied,
etc. At some stage humans developed meta-informational
(meta-cognitive) abilities to reflect on, reason about, increas-
ingly complex examples of such structures and relationships,
including possible future structures; e.g. shelters not yet built,
clothing not yet made from an animal skin, a meal whose in-
gredients are not yet assembled.

As yet unknown evolutionary changes must have supported
new proto-mathematical abilities for manipulating and using
information about structures, processes, actions, forces, etc.
including future possible (intended) cases. A large subset is
shared with other intelligent species. The mathematics that
we teach and do research on is just a small subset, and almost
certainly cannot be understood independently of the less ob-
vious mathematical competences we share with many other
species, especially topological and geometrical competences.
Different mathematical structures occur in percepts, in inten-
tions, in plans and, later on, in linguistic communications.

Evolutionary pressures for mathematical minds
Increasingly complex forms of life need to use increasingly
complex and varied information structures including motives:
information states concerned not with what is the case but
with what should be the case, i.e. not just belief-like but
also desire-like information contents of increasingly complex
kinds. I am not claiming that ALL intelligent behaviour is
based on current biological needs, or expected rewards, since
some motives are triggered as “internal reflexes” by opportu-
nities without any expected benefit, as can be seen in much
playful activity in young children, kittens, apes, and others.
What is learnt in such contexts can have consequences that
are later useful in ways that the individual could not possibly
predict. So although the mechanisms do not involve expected
rewards, the indirect benefits they previously produced in an-
cestors may explain the survival of the goal generating mech-
anisms in their descendants, though not how they formed in
the first place (using specially evolved construction kits).

There may be “branch points” during development where
different lineages take different branches, under control of
genome and environment. But at later stages of development
evolution can support greater environmental variation, so that
genetically programmed developmental choices may use in-
formation previously acquired during development. The fact
that common gene-based language potential can support de-
velopment of thousands of different languages in different

contexts illustrates this.
That requires the genome to have a mathematically abstract

language specification with very rich generative power, as
Chomsky pointed out long ago. I suggest that that is a com-
mon feature of biological intelligence, which began with evo-
lution of intelligent control systems in many species that have
never been able to use human languages. But they must have
rich internal languages for specifying percepts, goals, actions,
and environmental structures, including structures that were
never encountered by earlier members of the species. A spe-
cial case is ability to represent entirely new affordances–not
unique to humans. .

One of the deep discoveries of evolution was the need for
reflexes: actions triggered without the agent having any idea
what the benefits are. We need to generalise this to include
reflex triggering of new internal motivational states that join
other current motivational states, and may or may not lead to
action, depending on what else is going on. I call this “Archi-
tecture Based Motivation” (ABM) in contrast with “Reward
Based Motivation” (RBM) which requires every selected mo-
tive to be associated with some measurable expected utility.

ABM seems to be the basis of much exploratory and play-
ful behaviour, including developing linguistic abilities of dif-
ferent sorts, e.g. early babbling and later uses of increasingly
complex syntactic forms and growing vocabularies. This may
be a source of mathematical development and discovery in
young humans (with much individual variation). It also de-
pends on prior, presumably genome-derived, mathematical
competences required for exploring novel semantic contents.

As evolution produced increasingly complex organisms,
with increasingly complex time-varying needs, and complex
articulated bodies capable of rich and varied interactions with
the environment, the requirements for mathematical abstrac-
tion in information processing increased, including use of ge-
ometrical and topological information about spatial structures
and both observed and desired changes in spatial relation-
ships, unlike organisms that simply depend on physical in-
fluences such as wind or water or the intervention of other
organisms to produce the changes they need, e.g. use of other
organisms for seed dispersal.

Simple types of information-based control are online: in-
formation is used as it is acquired and immediately over-
written by new information, e.g. if an animal moves continu-
ously towards a fixed or moving edible target. More sophisti-
cated organisms combine information fragments acquired at
different times to produce richer information-structures con-
cerning the environment, e.g. a human (or urban animal) stor-
ing and integrating information about the layout of a town and
later using the information to work out a route that will reach
a new target. This uses offline information processing, and
offline control: actions may be selected long before they are
performed, unlike online homeostatic control. The richer the
environment, the more varied its structures, routes, materials,
and other resources, the more powerful the organism’s mathe-
matical resources will need be to be able to create and reason
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about novel possibilities for achieving goals, avoiding dan-
gers, etc. Because of the need to cope with novelty by getting
things right first time, empirical learning from repeated trials
will be of limited use. This is where mathematical compe-
tences are so biologically useful: solutions can be evaluated
in advance by reasoning, using structural relationships, in-
stead of having to be evaluated only by repeated testing.

There are differences between a planetary system in which
mathematical relationships restrict motions resulting from
forces and what goes on in the majority of biological con-
trol systems: where, instead of physical processes directly
producing or modifying behaviour, there are intervening in-
formation processing mechanisms. E.g. sensory systems ac-
quire information and motor control mechanisms use that in-
formation in selecting between control alternatives. The con-
trol actions may be influenced by information from several
sources: e.g. information about an internal need (e.g. for
energy-rich food, or for water) can be combined with infor-
mation about opportunities and obstacles in the environment,
or lurking predators. These are unlike processes combining
physical forces.

In many cases physical attractive forces increase as dis-
tance is diminished, which in the case of physical control
leads to increasing acceleration. That could be disastrous for
an organism approaching a target: so it is useful be able to
detect closeness to the target and use that information to pro-
duce deceleration (using stored energy for braking). Where
the target is a prey animal that is likely to attempt escape, ac-
celeration right up to contact may be useful, but that requires
additional control mechanisms, e.g. producing appropriate
motion of claws, or beak or jaws, to capture (or perhaps kill)
the prey while avoiding a dangerous impact for the predator.

Even in a very simple single-celled organism, mathemat-
ical relationships play a role in control of osmotic pressure,
which can be altered by absorption of nutrients or secretion of
waste products. One of the important differences between
forces and information contents is that forces remain active
in the presence of other forces, and their effects combine to
produce “resultant” forces, whereas an information item can
be temporarily disabled by being ignored, until some urgent
task has been completed. So it is essential in organisms to
be able to use information to control which other information
items have causal powers at which times.

Mathematical competences required for use of such infor-
mation in selecting and controlling actions are found in many
non-human species. These are important aspects of percep-
tion and use of what James Gibson called “affordances” in
the environment . However Gibson focused on a subset of
affordances, mainly those that are relevant to online control
of actions by the perceiver, whereas humans can perceive and
make use of positive and negative affordances for other indi-
viduals, and “proto-affordances” – that involve possibilities
for change in many aspects of the environment that are not
produced by the perceiver and which may be irrelevant to the
needs of the perceiver, for example, perceiving that if a cer-

tain apple drops off the tree it will not hit the ground because
it will land on a rock, whereas if the rock is moved the result
will be different. Humans, (and some other organisms?) can
also deal with negative affordances that are impossibilities.7

Moreover, control relationships can change as an animal
grows: genetic mechanisms must somehow enable control-
ling forces to be varied as sizes, weights, moments of inertia,
geometrical relationships and muscular strength change in a
growing animal, as D’Arcy Thompson and others have noted.

Besides control based on quantitative relationships, evo-
lution also uses information about structures and structural
relationships, insofar as genetic information plays a role in
specifying parts and relationships between parts of develop-
ing chemical and physical structures. In humans, another
kind of mathematical power is involved in the ability of in-
dividuals to develop linguistic competences that make use of
complex and varied grammatical structures for information-
bearing utterances, and competences that build complex se-
mantic interpretations based on structural relationships (com-
positional semantics).

Evolution: the blind mathematician
In all these cases the evolutionary and developmental con-
trol mechanisms seem to make use of repeated discovery
of new structures that can be abstracted from particular in-
stances and later combined with different information in new
contexts, while performing complex controlled actions, and
while interpreting complex structured perceptual input. Some
information about newly discovered abstractions is somehow
encoded in genetic mechanisms that allow the information
gained to be used in later products of evolution. And in many
cases it is crucial that the replication is not a matter of re-
peated blind copying of the same structure: what is passed on
is at a level of abstraction that can be instantiated in different
instances, for example (a) when used for continued control
of organisms or parts of organisms while growth produces
different sizes, weights, size-ratios, moments of inertia, etc.
during development and (b) when used in newly emerging
species with different details caused by changes in other parts
of the genome.

So evolution can be described as “discovering” that new
mathematical structures are possible, and that they can be
used for new control functions, during reproduction, during
development, and during particular actions. Moreover, the
evolutionary and developmental histories can be regarded as
proofs of those mathematical possibilities, even though there
is no mathematical mind at work in discovering the theo-
rems or creating the proofs. In that sense biological evolu-
tion can be regarded as a “blind theorem prover”, rather than
Dawkins’ “blind watch-maker”.

Computers are much faster and more accurate than humans
at performing certain kinds of mathematical operations, in-
cluding numerical and statistical operations, and using arith-

7http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/impossible.html
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metic, algebra and logic to derive conclusions, solve prob-
lems and make plans. But not all mathematical discover-
ies made by humans are based on arithmetic, algebra and
logic. Examples include the ancient geometrical and topo-
logical discoveries leading up to Euclid’s Elements8 made by
ancient mathematicians, e.g. Euclid, Archimedes, Pythago-
ras, Zeno and others; and also the implicit mathematical dis-
coveries regarding syntactic and semantic structures used in
human languages.

Even pre-verbal toddlers, and other animals, such as crows,
elephants, weaver-birds and squirrels, seem to have spatial
(e.g. topological) reasoning competences unmatched by cur-
rent automated theorem provers and highly trained robots.9

However, non-human mathematical reasoners and very young
humans lack meta-cognitive abilities to reflect on their math-
ematical discoveries or to explain and defend them against
criticism. That limitation may also have afflicted our adult
ancestors who first started to make unreflective and unsys-
tematic use of some of their practical reasoning abilities.

I suspect the variety of evolved mathematical competences
is far larger and deeper than anyone has noticed. Researchers
are currently struggling to sort them out. E.g. there is a no-
tion of density (of grains of salt or sand, of leaves, or flock-
ing birds) and a notion of an area or volume occupied with
uniform density, which leads to a notion of amount or nu-
merosity that varies both in proportion with the density and
with the area or volume, because total amount, or numeros-
ity, as opposed to (cardinal) number increases or decreases as
either the density, or the area/volume increases or decreases.
Understanding that can lead to inferences about increasing
numerosity as density remains constant and area or volume
increases, or as density increases while area or volume re-
mains constant. This can support judgements of partial or-
derings of amount or numerosity. But it does not provide a
basis for comparing two regions A and B where area or vol-
ume of A is greater than that of B, but density of occupancy
of B is greater than that of A. Understanding the tradeoff be-
tween change in total space and change in density requires
a kind of mathematical sophistication that is a pre-cursor to
the understanding of integral calculus. I don’t know whether
anyone understands the mechanisms used in such cases, nor
how they produce new competences during development.

Still more mechanism is required for comparisons of areas,
volumes, lengths and amounts of stuff occupying areas or vol-
umes. Those require understanding of new kinds of number
that occupy spaces between the natural numbers. Ratios, or
fractions may seem at first to suffice, so that we can talk of
a jug being half, three quarters, five sixths, full etc., but an-
cient mathematicians discovered (to their horror) that those
ratios do not suffice. In particular something more is needed
if the side of a square and its diagonal are to be thought of
both having definite lengths, as was understood by the time

8http://www.gutenberg.org/ebooks/21076
9Examples involving human toddlers can be found here

http://www.cs.bham.ac.uk/research/projects/cogaff/
misc/toddler-theorems.html

of Euclid’s Elements.

Limited mathematical abilities of AI systems
Computers are generally thought of as good at doing math-
ematics. But that is based on a limited view of the scope
of mathematics. Computers can perform logical, arithmeti-
cal (and therefore statistical) calculations, and operations on
text strings, at enormous speeds, because those processes are
readily mapped onto operations on bit patterns – especially
in combination with random access memory (RAM) opera-
tions that allow contents of memory locations to be checked
or modified at very high speed (unlike operations on the tape
of a Turing machine). Moreover developments in AI, soft-
ware engineering, theoretical computer science, networking
technology, and increasingly sophisticated fabrication pro-
cesses have expanded the abilities of (networks of) computers
so that they increasingly form interfaces to a host of everyday
functions, and outperform humans in many activities.

Yet there are many aspects of human (and non-human) in-
telligence that are not yet modelled on computers, and seem
to be particularly hard to model. Many cases go unnoticed
by researchers because because they involve not just abili-
ties to act (e.g. catching, throwing, assembling, stacking,
etc.) but also abilities to understand possibilities, necessi-
ties and impossibilities, which abound in both mathematics
and everyday life. These aspects of human and animal intel-
ligence cannot be derived from statistics based learning, nor
expressed in probabilistic frameworks, because they are con-
cerned with what is possible, impossible, or necessarily the
case, not probabilities. And many are about structures, not
measures.

The Turing-inspired Meta-Morphogenesis project includes
trying to understand many intermediate forms of information
processing between the very simplest organisms and current
highly intelligent animals, in the hope that we may stumble
across cases that we have never previously thought of that
provide new clues regarding mechanisms required and used
in brains. The project has already identified a need for evo-
lution to make use of both the fundamental construction kit
(FCK) provided by the physical universe and also many de-
rived construction kits (DCKs) produced by biological evo-
lution. Some are concrete construction kits for producing
physical and chemical structures and processes. Others are
abstract construction kits for producing information struc-
tures and information processing mechanisms. It is hoped
that eventually we’ll understand the sorts of construction kit
required to replicate human mathematical intelligence in ma-
chines, so that we’ll know how to make a baby Kantian robot
that can grow up to make discoveries like Euclid.

For more on the meta-morphogenesis project see:
http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/meta-morphogenesis.html
FOR MISSING REFERENCES SEE:
http://www.cs.bham.ac.uk/research/projects/
cogaff/sloman-iccm17.pdf
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Abstract

We describe a computational model of two central aspects of
people’s probabilistic reasoning: descriptive probability es-
timation and inferential probability judgment. This model
assumes that people’s reasoning follows standard frequentist
probability theory, but is subject to random noise. This random
noise has a regressive effect in probability estimation, moving
probability estimates away from normative probabilities and
towards the center of the probability scale. This regressive
effect explains various reliable and systematic biases seen in
people’s probability estimation. This random noise has an anti-
regressive effect in inferential judgment, however. This model
predicts that these contrary effects will tend to cancel out in
tasks that involve both descriptive probability estimation and
inferential probability judgment, leading to unbiased responses
in those tasks. We test this model by applying it to one such
task, described by Gallistel et al. (2014). Participants’ median
responses in this task were unbiased, agreeing with normative
probability theory over the full range of responses. Our model
captures the pattern of unbiased responses in this task, while
simultaneously explaining systematic biases away from nor-
matively correct probabilities seen in other tasks.

We live in a world of nonstationary stochastic processes,
where events occur with some associated probability, and
this probability itself changes unpredictably over time. To
make successful predictions about event occurrence in such a
world we must use two distinct types of probabilistic reason-
ing: descriptive probability estimation (given the events we
have seen recently, what is the current underlying probability
of A?) and inferential probability judgment (given our cur-
rent estimate for the probability of A, is the current sample of
events consistent with that probability? Or should we infer
that the underlying probability of A has changed?). Our aim
in this paper is to present a computational model of these two
interacting components of probabilistic reasoning.

One revealing aspect of human probabilistic reasoning is
the reliable occurrence of a number of systematic biases;
biases such as conservatism (Erev et al., 1994), subadditiv-
ity (Tversky and Koehler, 1994) and the conjunction fallacy
(Tversky and Kahneman, 1983). The model we present here
was originally developed to explain these biases in terms
of the regressive effect of random noise in reasoning (see
Costello and Watts, 2014). Here we extend this model to in-
ferential probability judgment, and show that this model ex-
plains patterns of bias seen in such judgment. This model pre-
dicts that, in situations that involve both forms of reasoning,
these regressive effects will tend to cancel out, leaving sub-
jective probability estimates that tend to agree with the nor-

matively correct values with no systematic bias. Such agree-
ment is seen in recent studies of probability estimation for
nonstationary stochastic processes by Gallistel et al. (2014).
We demonstrate the model by applying it to Gallistel et al.’s
study in detail.

The probability theory plus noise model
Our model assumes that people’s probability judgments are
produced by a mechanism that is fundamentally rational, but
is perturbed in various ways by purely random noise or error,
which causes systematic regressive effects. We take P(A) to
represent the ‘true’ probability of event A (that is, the propor-
tion of items in memory that represent A). We take p∗(A) to
represent an individual estimate of the probability of event A,
and take 〈p∗(A)〉 to represent the expectation value or mean
of these estimates for A: this is the value we would expect to
get if we averaged an infinite number of individual estimates
for p∗(A). In standard probability theory, the probability of
some event A is estimated by drawing a random sample of
events, counting the number of those events that are instances
of A, and dividing by the sample size. The expected value of
these estimates is P(A), the probability of A. We assume that
people estimate the probability of some event A in exactly this
way: randomly sampling events from memory, counting the
number of instances of A, and dividing by the sample size.

If this counting process was error-free, people’s estimates
would have an expected value of P(A). Human memory, how-
ever, is subject to various forms of random error or noise. To
reflect this we assume events have some chance d < 0.5 of
randomly being counted incorrectly: there is a chance d that
a ¬A (not A) event will be incorrectly counted as A, and the
same chance d that an A event will be incorrectly counted as
¬A. Given this form of noise, a randomly sampled event will
be counted as A if the event truly is A and is counted cor-
rectly (with a probability (1−d)P(A), since P(A) events are
truly A and events have a 1−d chance of being counted cor-
rectly), or if the event is truly ¬A and is counted incorrectly
as A (with a probability (1−P(A))d, since 1−P(A) events
are truly ¬A, and events have a d chance of being counted
incorrectly). Summing the probabilities of these two mutu-
ally exclusive situations, we get an expected value for a noisy
probability estimate of

〈p∗(A)〉= (1−2d)P(A)+d (1)
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with individual estimates varying independently around this
expected value. This average is systematically biased away
from the ‘true’ probability P(A), such that estimates will tend
to be greater than P(A) when P(A) < 0.5, and will tend to
be less than P(A) when P(A) > 0.5: a pattern of systematic
regression towards 0.5, the center of the probability scale.

Regression, in this model, explains a number of observed
patterns of bias in people’s probability estimates, such as
conservatism, subadditivity, and the conjunction fallacy (see
Costello and Watts, 2016a, 2014). This model also makes a
number of novel predictions about patterns of bias and agree-
ment with probability theory for various probabilistic expres-
sions; for example, this model predicts that

p∗(A)+ p∗(B)− p∗(A∧B)− p∗(A∨B) = 0

will hold, on average, in people’s probability estimates for
any events A and B (because in this expression the regressive
effects of noise on individual probability estimates p∗(A),
p∗(B) p∗(A∧B) and p∗(A∨B) will tend to cancel out). These
predictions are strongly supported by experimental results
(see Costello and Watts, 2014, 2016b).

Inferential probability judgment
Equation 1 describes the expected value for a probability es-
timate in one type of probabilistic reasoning task: one where
the reasoner sees a sample containing some instances for the
event of interest, A, and produces an estimate of the underly-
ing probability P(A). This type of task involves the estimation
of a descriptive probability: a probability that summarises the
observed sample. We now consider a probabilistic reason-
ing task where the reasoner is given an explicit probability
value p and a sample of n events containing x instances of
event A , and judges whether the number of A’s seen in the
sample is consistent with the given probability. This type
of task involves the estimation of an inferential probability
P(x,n|P(A) = p): the probability of seeing x A’s in a sam-
ple of n items, given that P(A) = p. Frequentist probability
theory provides a normative mechanism for estimating such
inferential probabilities: to estimate P(x,n|P(A) = p), draw
a series of random samples, each of size n, from a popula-
tion where P(A) = p and count the proportion of samples that
contain exactly x instances of A. This proportion gives an es-
timate of the probability of the observed sample occurring in
a population with P(A) = p: the lower this estimate, the less
likely it is that the observed sample came from such a pop-
ulation. The expected value of this estimate is given by the
binomial probability function

P(x,n|p) =
(

n
x

)
px(1− p)n−x (2)

In our model we assume that people estimate inferential prob-
abilities just as in frequentist probability theory: by drawing a
series of random samples of size n from a (simulated) popula-
tion where P(A) = p, and counting the proportion of samples
that contain exactly x instances of A. We assume that this

counting process is subject to random error; that the count of
occurrences of A in a sample is subject to random noise at
a rate d (there is d chance that an instance of A in a given
sample will be counted as ¬A, and d chance that an instance
of ¬A in a given sample will be counted as A). Given this
random error, with P(A) = p the chance of an instance in a
sample being counted as A is equal to (1− 2d)p+ d (from
Equation 1), and so the expected value for this noisy estimate
is given by the binomial probability

〈p∗(x,n|p)〉=
(

n
x

)
((1−2d)p+d)x((1−2d)(1− p)+d)n−x

(3)
Note that the probabilities given in Equation 2 and Equation
3 are both binomially distributed with common terms x and
n. If we take pe to be our current estimate of the probablity of
A in the population in question, this means that, for any given
values of x and n, the associated noisy inferential probability
〈p∗(x,n|pe)〉 is exactly equal to another normatively correct
inferential probability P(x,n|p) when

((1−2d)pe +d)x((1−2d)(1− pe)+d)n−x = px(1− p)n−x

When d ≤ p ≤ 1− d, this equality holds for all values of n
and x when

(1−2d)pe +d = p

or equivalently when

pe =
p−d

1−2d

This expression is ‘anti-regressive’, giving values for pe that
are closer to the boundaries 0 and 1 than values of p: pe is
greater than p when p > 0.5, and less than p when p < 0.5.

Properties of the model
In this section we apply the above model to two sets of ex-
perimental results: on conservatism in inferential probabil-
ity judgment, and on probability estimation in tasks that mix
probability estimation and inferential judgment.

Conservatism in inferential judgment
Experimental studies typically investigate inferential proba-
bility estimation indirectly, using the related concept of rela-
tive probability. These studies involve describing two pop-
ulations containing complementary proportions of two dif-
ferent types of event. Participants are told that a population
has been picked at random, and are then shown a sample of
events drawn from the selected population and asked to as-
sess the probability that the sample came from one population
rather than the other. Typically these populations are ‘book-
bags’ containing poker chips, with one bag containing, for
example, 70% red chips and 30% black (this is the ‘red bag’),
and the other bag containing the complementary proportions:
30% red chips and 70% black (this is the ‘black bag’). Par-
ticipants are told the distribution of chips in each bag. They
are then shown a sequence of n chips and asked, after seeing
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each chip, to estimate the probability that the sample came
from the red bag rather than the black bag, or vice versa (the
relative probability of one bag over the other; see Peterson
and Beach, 1967, for examples).

Having seen a sample of n events containing x red chips,
the normatively correct relative probability that the sample
came from the red bag rather than the black bag is given by

R(x,n, p)=
P(x,n|p)

P(x,n|p)+P(x,n|1− p)
=

1

1+
[

1−p
p

]x [ p
1−p

]n−x

(4)
(since the proportion of red chips is p in the red bag, and 1− p
the black bag). As participants proceed through these tasks
they give relative probability estimates that follow the direc-
tion required by normative probability theory, but with values
of these estimates being ‘conservative’: less extreme than the
normatively correct values. This means that if participants
see x > n/2 red chips in their sample, they give estimates for
the probability that the sample came from the red bag that are
greater than 0.5 but less than the normatively correct value,
while if participants see x > n/2 black chips in their sample,
they give estimates for the probability that the sample came
from the black bag that are greater than 0.5 but less than the
normatively correct value. In applying our model to this task
we assume, without loss of generality, that red chips are most
frequent in the sample and take x > n/2 to be the number of
red chips in the sample of n events that have been seen, and
assume p > 0.5 to be the proportion of red chips in the red
bag (the bag that participants associate with the sample).

The estimated relative probability, in our model, of a seeing
a sample of size n with x red chips coming from the red bag
rather than the black bag is given by

RE(x,n, p) =
p∗(x,n|p)

p∗(x,n|p)+ p∗(x,n|1− p)

Note that, since by assumption p > 0.5 and x > n/2, from
Equation 3 we see that p∗(x,n|p) > p∗(x,n|1− p) will tend
to hold (subject, of course, to random error: more specifi-
cally, the higher the values of x and p the more likely it is
that this inequality will hold). This means that RE(x,n, p)
will be greater than 0.5, and these noisy relative probabil-
ity estimates will follow the direction required by normative
probability theory, just as seen in experiments.

For p > .5 this function RE(x,n, p) will be concave for
all x > n/2 (since as x increases from n/2 the probability
that the sample came from the red bag increases while the
probability that the sample came from the black bag simul-
taneously falls). Since from Jensen’s Inequality we have
〈 f (x)〉 ≤ f (〈x〉) for concave functions (the expected value of
a concave function is less than that function of the expected
value of its argument), we get〈

p∗(x,n|p)
p∗(x,n|p)+ p∗(x,n|1− p)

〉
≤ 〈p∗(x,n|p)〉
〈p∗(x,n|p)〉+ 〈p∗(x,n|1− p)〉

and so, rearranging and substituting, we get

〈RE(x,n, p)〉 ≤ 1

1+
[
(1−2d)(1−p)+d

(1−2d)p+d

]x [ (1−2d)p+d
(1−2d)(1−p)+d

]n−x

(5)
Comparing Equations 4 and 5 we see that 〈RE(x,n)〉 <

R(x,n, p) when 1+d
(

1
p −2

)
1+d

(
1

1−p −2
)
x

<

 1+d
(

1
p −2

)
1+d

(
1

1−p −2
)
n−x

(6)

Since by assumption we have p > 0.5 and x > n/2 we
see that the inequality in equation 6 always holds, and so
0.5 < 〈RE(x,n, p)〉 < R(x,n, p): estimated relative probabil-
ity follows the direction required by probability theory, but
is conservative, just as observed in people’s relative proba-
bility judgments. In other words, even though the expected
values for the individual inferential probability judgments
〈p∗(x,n|p)〉 and 〈p∗(x,n|1− p)〉 are each anti-regressive rel-
ative to their corresponding normative values in this model,
when combined to produce an overall estimate of relative
probability, this estimate is regressive and so reproduces the
pattern of conservatism seen in inferential judgment.

Combined estimation and judgment tasks
We finally describe how this model applies to tasks that in-
volve both descriptive and inferential probability estimation.
We consider an iterative task that involves the repeated updat-
ing of an estimate for the hidden probablity parameter (which
may itself randomly change), given a sample of events pre-
sented outcome by outcome. People’s performance in such
tasks were investigated in an experiment by Gallistel et al.
(2014), where participants gave repeated estimates of the hid-
den parameter, p, of a stepwise non-stationary Bernoulli pro-
cess that controlled the colour of a circle being drawn from a
concealed box. On each trial participants clicked a button to
draw a new circle from the box. After being drawn, the circle
evaporated, and participants could update their estimate for
the hidden probability p. Participants were told that the box
would sometimes be silently replaced by another box with a
different value of p. Participants could update their estimates
by either clicking a ”The box has changed!” button (and then
picking a new probability estimate), or by adjusting their cur-
rent probability estimate, or by making no change.

There were two main results from this experiment. First,
people’s probability estimates were characterised by rapid
changes in the estimated value in response to changes in the
underlying hidden probability, separated by periods of small
adjustments in the estimate (see Figure 1, left side). The
speed of detection of a change in the underlying probability
p depended on the degree of change: large changes in the un-
derlying probability were detected more rapidly than smaller
changes. The median latency for detection of a change in
probability estimate in response to a change in the underlying
probability was around 12 events in Gallistel et al. (2014).
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Mapping is the identity function. Like Robinson and in
accord with the Peterson and Beach summary of the relevant
literature up to 1967, we find that the mapping from true proba-
bility to median reported probability is the identity. The median
trial-by-trial slider settings track closely the hidden true probabil-
ities (see Figure 6). This is consistent with Robinson’s finding that
there was no significant mean error at any value of the probability.

Precision. The precision with which subjects estimate the
probability is the measure of their average trial-by-trial error.
However, the appropriate measure of error requires some discus-
sion, because, as noted in our introduction, in measuring precision,
one should use the “observed” probability, not the hidden, unob-
served true probability. To anticipate, when appropriately mea-
sured, subjects’ precision of estimation is the same at all values of
the observed probability, except the most extreme (see Figure 18).

Rapid detection of changes. Like Robinson’s subjects, our
subjects detected changes quickly (see Figure 7). Our measure of
the change-detection latency in slider setting is the number of trials
between a true change and the first appropriately signed step in the
slider setting thereafter. This is the same as Robinson’s measure.
Our measure of the expressed change latency is the number of
trials between a true change and the first click on the “I think the
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Figure 1. (Left) Trial-by-trial true probability (dashed line) and trial-by-trial probability estimate (solid line) for Subject 4,
Session 8 in Gallistel et al.’s task (From Fig. 5 in Gallistel et al., 2014, page 102; pg and p̂g represent true and estimated prob-
abilities respectively). (Right) Trial-by-trial probability estimates produced by our model for the same set of true probabilities.
These graphs illustrate the step-hold pattern seen in Gallistel et al.’s task, and show that the model reproduces this pattern.

The second main result was that the relationship between the
true probability p and participants estimated probability was
essentially that of identity: the median trial-by-trial probabil-
ity estimates closely tracked the true hidden probability with
no systematic bias.

This pattern of agreement with the true probability arises,
in our model, due to the cancellation of regressive effects in
probability estimation against those in inferential judgment.
Suppose we see a series of random samples drawn from a
population with a parameter p = P(A), and take pe to repre-
sent our estimate of p (which we repeatedly update as out-
comes are presented in the task). This estimate pe will be
subject to random noise, and so will have a regressive av-
erage value as in Equation 1. Individual estimates pe will
be adjusted (in a quasi-random walk) in response to infer-
ential probability judgment of the chance of obtaining the
currently-seen sequence of outcomes, given our current esti-
mate. This inferential probability judgment will also be sub-
ject to random noise, and so will be anti-regressive. This esti-
mate pe will be least likely to be adjusted when it reaches
a value maximally consistent with the average number of
counted occurrences of A in the presented sample, and so will
tend to fix at that value. Due to random noise, the average
number of counted occurrences of A in a sample is equal to
[(1−2d)p+d]n, and so pe will fix at the value for which the
inferential probability 〈p∗([(1−2d)p+d]n,n|pe)〉 is max-
imised. Since from Equation 3 this inferential probability has
a binomial distribution with probability (1−2d)pe +d, it has
its maximum value when

(1−2d)pe +d = (1−2d)p+d

or equivalently, when pe = p; when our estimate pe for the
underlying population probability equals the true value. In
other words, even though descriptive probability estimates are
regressive in this model (due to random noise), and inferen-
tial probability estimates are anti-regressive (also due to ran-
dom noise), when these two types of probability judgment are
combined these regressive and anti-regressive effects should
on average cancel out, leaving estimates that on average agree
with the hidden probability parameter p; just as seen in mixed
estimation and inferential judgment tasks such as Gallistel et
al.’s.

Computational simulation
We apply the model to Gallistel et al.’s continuous probability
perception task by assuming that a continuous probability es-
timate pe is assessed by counting the frequency of A in n just-
observed events (subject to random noise). The parameter
n here represents the size of short-term memory available to
store just-seen events: we assume n is small, but beyond that
make no assumptions about the value n (in our simulations,
below, we chose n randomly for each simulated participant,
uniformly in the range 5 . . .20).

We take x to represent the number of occurrences of A in
the n most recently observed events and take xe to represent
the noisy count of that number (the count of occurrences ob-
tained with a chance d of randomly miscounting). The ex-
pected value of xe equals (1− 2d)x+ nd, and so the imme-
diately observed probability of A in that sample has the ex-
pected value

q = (1−2d)
x
n
+d (7)

On each event occurrence the model makes one of three
choices, corresponding to the 3 choices available to partici-
pants in Gallistel et al.’s experiment. First, the model may
reject the current value of pe as inconsistent with the number
of A’s just observed, and update to a new estimate by set-
ting pe = q (this choice corresponds to clicking ”The box has
changed!” in Gallistel et al.’s experiment). Second, the model
may decide that the underlying distribution has not changed
but that q is more consistent with the observed number of A’s
than pe. In this case the model again updates to a new esti-
mate by setting pe = q: this choice corresponds to a small ad-
justment of the current probability estimate. Third, the model
may decide not to modify pe.

To decide whether the current estimate pe needs to be re-
jected, the model considers the chance of seeing xe occur-
rences of A in n samples where the probability of seeing A in
those samples is actually pe. If this chance is too low pe is
rejected. The model assesses this chance in a simple way: by
generating 100 random samples (each of size n, with A occur-
ring randomly with probability pe) and counting the number
of A’s in each sample. This counting process is subject to
random error, with some probability d < 0.5 that an occur-
rence of A will be counted as ¬A, or an occurrence of ¬A
will be counted as A. The proportion of these samples that
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contain exactly xe occurrences of A represents an estimate
of the inferential probability PE(xe,n|pe). If this inferential
probability is less than some decision criterion T1 the model
concludes that pe should be rejected because the underlying
distribution has changed. The model then changes the new
estimate to q.1.

If the current estimate is not rejected, the model next con-
siders making an estimate adjustment. To decide whether the
current estimate pe needs to be adjusted, the model consid-
ers the inferential probability PE(xe,n|q): the chance of see-
ing xe occurrences of A in n samples drawn from a popu-
lation where P(A) = q. As above, the model assesses this
chance by generating 100 random samples (each of size n,
with A occurring randomly with probability q) and counting
the number of A’s in each sample (subject to a rate d of ran-
dom error in counting). The proportion of these samples that
contain exactly xe occurrences of A represents an estimate of
the inferential probability PE(xe,n|q). If the difference be-
tween this inferential probability and the previous inferential
probability is greater than some decision criterion T2 (that is,
if PE(xe,n|q)−PE(xe,n|pe) > T2) the model decides that q
is a better estimate and changes to a new estimate by setting
pe = q. Otherwise the current estimate pe is left unchanged.

Results
We wrote a computer program implementing this model and
tested it by simulating Gallistel et al.’s experiment. On each
run of this simulation the model was shown a consecutive
sequence of 1000 randomly generated A or ¬A events. Af-
ter seeing each event, the model either rejected its current
probability estimate and changed to the new estimate q; or
adjusted its estimate to the new estimate q; or else left its es-
timate unchanged. Events were generated randomly, with a
hidden probability p. The value of p itself changed randomly
over the sequence of 1000 events, with the probability that
p would change after a given event being set at a constant
value of 0.005 (just as in Gallistel et al.’s experiment). The
size and direction of a change in the hidden probability were
determined by a random choice of the next value from a uni-
form distribution between 0 and 1, subject to the restriction
that p/(1− p), the resulting change in the odds, was no less
than fourfold, just as in Gallistel et al. (2014).

To investigate the role of error in descriptive probability
estimation and in inferential judgment, we designed the pro-
gram so that we could set one error rate d for descriptive es-
timation, and another rate ds for inferential judgment. We
simulated Gallistel et al.’s experiment for 4 different pairs of
values for these parameters: Sim A (d = 0.0,ds = 0.0), Sim
B (d = 0.1,ds = 0.0), Sim C (d = 0.0,ds = 0.1), and Sim D
(d = 0.1,ds = 0.1). We set the criterion parameters T1 and

1Note that our decision to use 100 random samples when estimat-
ing inferential probabilities here is essentially arbitrary: this number
was chosen to allow us to use values for the decision criteria T1 and
T2 that correspond to standard significance level values such as 0.01
and 0.05. Versions of the simulation that make use of much smaller
numbers of samples give essentially the same results as seen here.

T2 to 0.01 and 0.1 respectively in all simulations, since initial
tests suggested that these values produced a reasonable rate of
adjustment in the model’s probability estimates. Each simu-
lation involved 500 ‘participants’ (runs of the model), all with
the same values for parameters d and ds, and each with a value
of n (the size of short-term memory) selected randomly from
the range 5 . . .20. Each ‘participant’ saw a different randomly
generated sequence of 1000 events, produced according to a
different randomly generated sequence of values of p (as in
Gallistel et al., 2014).
Rapid detection of changes The median latency between a
change in the hidden probability p and the recognition of that
change by the model (via rejection of the current probability
estimate) was 10 in simulations A and B, 13 in simulation C
and 12 in simulation D. These values agree with the median
latency of reported change detection of 12 seen in Gallistel
et al. (2014).
High hit rates and low false alarm rates Gallistel et al.
(2014) describe a method for computing hit rates and false-
alarm rates in participant’s responses in their experiment:
they found that nine out of ten participants had hit rates
in the range 0.77 . . .1 and false-alarm rates in the range
0.004 . . .0.02. We used the same method to compute hit rates
and false alarm rates across all ‘participants’ in our simula-
tions. Average hit rates were 0.87,0.79,0.81,0.76 and false-
alarm rates were 0.006,0.005,0.005,0.005 in simulations A,
B, C and D respectively. These agree with the rates seen by
Gallistel et al. (2014).
Precision We assess the precision of the model’s probabil-
ity estimates by computing the RMSD between the model’s
estimate at a given event against the true probability p at that
event. These RMSD’s between estimated and true probabil-
ities were 0.15,0.17,0.17,0.17 for simulations A, B, C and
D respectively. These were consistent with the correspond-
ing RMSD’s for participants in Gallistel et al.’s experiment,
which ranged between 0.15 and 0.21.

These three aspects of the model are illustrated in the right
of Figure 1. This figure shows trial-by-trial probability esti-
mates produced by the model for one run, with parameter val-
ues d = 0.1,ds = 0.1,n = 20. Values of the true probability p
were controlled match those in Gallistel et al.’s example. In-
dividual event occurrences in this run, however, were random,
and did not follow the precise sequence of event occurrences
in Gallistel et al. (2014). This figure shows that the model
produces the step-hold pattern seen in Gallistel et al.’s task,
with large changes in the estimate when the hidden probabil-
ity changes, and small adjustments, or no changes, otherwise.

Identity between true probability and median estimates
Recall that the noisy frequentist model predicts that noise
will have different effects in different probability judgment
tasks: when estimating a probability from a sample (descrip-
tive probability estimation), noise will produce regressive ef-
fects; when estimating the likelihood of a sample given a
probabilty (inferential probability judgment), noise will pro-
duce anti-regressive effects; and in tasks that involve both
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Figure 2. Median (squares) and interquartile intervals (verti-
cal lines) of model’s probability estimates plotted against cor-
responding true probabilities, for different values of the noise
parameters: d = 0.0,ds = 0.0(graph A), d = 0.1,ds = 0.0
(graph B) d = 0.0,ds = 0.1 (graph C) and d = 0.1,ds = 0.1
(graph D). The dashed line represents identity.

forms of estimation, these contrasting effects of noise can-
cel out, producing agreement with the true probability. To
test these predictions, for each simulation we calculated the
median estimate produced by the model for a given hidden
probability value p. The results are shown in the 4 graphs in
Figure 2. Graph A gives the results obtained when there is
no noise in either descriptive estimation or inferential judg-
ment (d = 0.0,ds = 0.0); the relationship between median es-
timates and the true probability is one of identity here. Graph
B gives the results with noise in descriptive estimation but not
inferential judgment (d = 0.1,ds = 0.0), and shows a clear
pattern of regression. Graph C gives the results with no noise
in descriptive estimation but noise in inferential judgment
(d = 0.0,ds = 0.1), and shows a clear anti-regressive pattern.
Finally, graph D shows the results obtained when there is the
same rate of noise in both components (d = 0.1,ds = 0.1).
The relationship between median estimates and the true prob-
ability in graph D is one of identity: the effects of noise in the
two components have cancelled each other out.

These results show that, if we assume a constant rate of
error d = 0.1 in both descriptive probability estimation and
inferential probability judgment, the probability theory plus
noise model produces results that agree closely with those
seen in Gallistel et al. (2014). Similar agreement holds for a
range of other values of d. These same values of d, however,
also produce regressive effects; in our model these regressive
effects produce patterns of bias such as conservatism, sub-
additivity and the conjunction fallacy. In other words, this
model may provide a single unified account for systematic

bias away from the true probabilies (in some tasks) and for
agreement with the true probabilities (in other tasks): an ac-
count that depends on a single factor - noise in reasoning.

Conclusions
Our aim in this paper is to present a general model of descrip-
tive probability estimation, of inferential probability judg-
ment, and of the interation between these two processes. This
model assumes that people estimate (descriptive and inferen-
tial) probabilities using a mechanism that follows standard
frequentist probability theory, but is subject to the biasing
effects of random noise in the reasoning process. In other
work we’ve shown that this model makes a number of novel
predictions about patterns of bias and agreement with prob-
ability theory for various probabilistic expressions: predic-
tions which are strongly supported by experimental results
(see Costello and Watts, 2016a, 2014, 2016b). Here we show
that this model can simultaneously explain the observed pat-
terns of bias seen in people’s descriptive probability estima-
tion and inferential probability judgment (which arise in the
model due to the regressive effects of random noise), and the
observed agreement with the underlying true probability in
tasks such as that of Gallistel et al.’s (where the regressive
effect of noise in descriptive probability estimation is coun-
teracted by the anti-regressive effect of noise in inferential
probability judgment).
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Abstract

Premises in conditional reasoning consist of an “if” statement
(e.g., “if I can catch the bus, I won’t be late”) and a fact (e.g.,
I can catch the bus). Such types of simple inference have been
studied empirically and formally for about a century. In the
past five decades, several cognitive theories have been pro-
posed to explain why humans deviate from predictions of con-
ditional logic. In this article, we (i) describe existing theo-
ries, (ii) develop multinomial processing tree (MPT) models
for these theories and systematically extend the theories with
guessing subtrees to test the predictive power of the cognitive
models. The models are evaluated with G2, Akaike’s (AIC)
and Bayesian Information Criteria (BIC), and Fisher’s Infor-
mation Approximation (FIA). Mental model theory with di-
rectionality for indicative conditionals while the independence
model for counterfactuals provide the best fits to data from psy-
chological studies.
Keywords: Human conditional reasoning; multinomial pro-
cess trees; cognitive theories

Introduction
Suppositional and hypothetical thinking are one of the ma-
jor cognitive abilities distinguishing humans from other an-
imals. This form of thinking is essential to reflect on past
events, hypothesize alternative outcomes, and partially pre-
vent future mistakes. It also facilitates us to make and test as-
sumptions about future outcomes to select actions, responses,
precautions or/and procedures. This kind of thought is usu-
ally presented as conditional statements in natural language.
A conditional statement is usually in the form of “if p then q”,
expressing a relationship between the antecedent p and a con-
sequent q. Classical studies of reasoning always use sets of
arguments consisting of a conditional and an additional cate-
gorical information (“a fact”), i.e., p, ¬p, q, ¬q. Consider the
following problem:

If I can catch the bus, I won’t be late. (conditional)
I can catch the bus. (categorical)
What, if anything, follows?

Almost all reasoners draw “I won’t be late” as a conclusion
of the two statements. This is an example of a modus ponens
(MP for short) inference, i.e., to conclude the consequent q (I
won’t be late) from the conditional and the categorical state-
ment p (I can catch the bus). Other inference schemas are
modus tollens (MT for short), i.e., to conclude ¬p (I cannot
catch the bus) from the conditional and an additional categor-
ical statement ¬q (I will be late).

Both schemas MP and MT are classically logically valid.
The other two schemas, namely denial of the antecedent (DA,

to conclude q when ¬p is given as the additional categori-
cal statement) and affirmation of the consequent (AC, to con-
clude p when q is given), are logically invalid but commonly
drawn by humans. We focus on deductive reasoning in this
article. While the classical logical interpretation is the so-
called material implication (if the antecedent is true, the con-
sequence cannot be false) and is easy to define, many psycho-
logical experiments have demonstrated that humans deviate
from this interpretation. For example, conditional statements
in subjunctive grammatical mood (i.e., counterfactual state-
ments) can trigger a different endorsement pattern of the in-
ferences (Byrne & Tasso, 1999; Thompson & Byrne, 2002),
compared to statements in indicative mood, i.e., factual state-
ments. It was found that people make inferences from coun-
terfactual conditionals that are less frequently made, for ex-
ample, when they are asked to reason from the two condition-
als: ‘If George kept his stock in Company B, then it earned
$1,200 (Byrne & McEleney, 2000)’ (factual) and ‘If George
had kept his stock in Company B, then he would have been
better off by $1,200’ (counterfactual). The two negative infer-
ences, namely Modus Tollens (MT) and Denial of Antecedent
(DA), had higher endorsement rates in the counterfactual than
in the factual condition. We analyze different psychological
theories while combining them with an idea from signal de-
tection theory (Macmillan & Creelman, 2004). In visual per-
ception (or memory recognition), the application is to test if
humans can correctly identify or not the presence or absence
of stimulus in an environment with background noise. We
apply this idea to conditional reasoning as follows:

Inference Response of Ss Response of Ss
does logically “not follow” “follow”
follow miss hit
not follow correct rejection false alarm

Both inference rules MP and MT are in the category of log-
ically follows. Hence if they are applied, we have a hit (oth-
erwise, we have a miss). If the inference rules AC and DA are
not applied, we have a correct rejection (but a false alarm if
applied). Oberauer (2006) has already formalized some the-
ories with multinomial process trees (MPTs) for all the 16
possible answer patterns that are subsets of the four infer-
ences. Hence, his tree included all cognitive processes alto-
gether that led from an input to the 16 leaves which represent
the responses. A single fixed guessing tree was inserted to
each tree. The models were evaluated by G2 (see later section
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for details).
Inspired by the aforementioned idea, we have systemati-

cally developed trees for each of the four inference patterns
combined with parametrized guessing trees, determining dif-
ferent modes of guessing. That means instead of one tree for
all the four inferences, 4 separate trees were constructed for
each of MP MT AC and DA according to different cognitive
theories. The remainder of this paper is structured as follows:
In the next section, we will briefly review current existing
theories for conditional reasoning. Then, we will represent
these theories as multinomial process trees and systemati-
cally vary the amount of guessing for different theories. Then,
we will review and report the model fitting results of 45 be-
havioral experiments (total number of participants N = 2530,
datasets with the endorsement percentages and N provided
for all the four inference rules) on conditional reasoning for
simple/classical/indicative conditionals and 12 experimental
datasets for counterfactual reasoning, N = 577. The cogni-
tive theories formulated as multinomial process theories are
then evaluated based on model selection criteria measures –
the information criteria AIC and BIC which take additionally
the model size into account. A discussion of the best cogni-
tive theory in terms of predictive power concludes the paper.

Cognitive Models of Conditional Reasoning
We introduce some formal notations that we will use in the
following sections. A conditional (“if p then q”) is written as
p→ q or (q | p). Negating a fact p is represented as ¬p, the
same applies for q. Theories of conditional reasoning can be
vastly classified into model-based, e.g., the theory of mental
models (Johnson-Laird & Byrne, 1991), rule-based, e.g., the
theory of mental logic (Rips, 1994), and theories that build on
the idea of Bayesian modeling (Oaksford et al., 2000).

Theory of mental models
The mental model theory (MMT) of conditional reasoning
(Byrne & Johnson-Laird, 2009) assumes that for a conditional
p→ q, the semantic information of each premise is repre-
sented in an initial mental model akin to:

p q
. . .

Hence both the antecedent and consequent are true in the
initial mental model. If p is given, a modus ponens infer-
ence, can be drawn and q is derived. In cases where other
information is given, e.g., ¬q, the model needs to be fleshed
out, i.e., other true interpretations of the conditional need to
be generated. This leads to the construction of three models
eventually:

p q (initial mental model)
¬p q (alternative mental model 1)
¬p ¬q (alternative mental model 2)

Hence, an MP-inference is easy, while MT requires more
cognitive effort to generate alternative models. MMT ex-
plains deviation of human reasoners from the normative logi-
cally correct performance by inaction or failure in the search

of counterexamples and fleshing out of the initial mental
model. The mental model theory does not make any assump-
tion about the directionality of the antecedent and consequent.
However, several studies have shown that the directionality
of conditionals plays a role in the reasoning process (Evans
& Beck, 1981; Barrouillet et al., 2000). We thus include both
the classical and extended mental model theory by introduc-
ing the assumption about directionality (Oberauer, 2006).

The theory of mental logic
The mental logic theory suggests that humans translate the
premises into logical form and use formal rules to draw or
prove the conclusion (Rips, 1994; Braine & O’Brien, 1998).
However, only MP and MT can be proved by formal rules.
MP can be drawn directly with the formal rule of inference
but the proof of MT requires several more steps, with reduc-
tio ad absurdum (finding a contradiction to the supposition
of p). That means, reasoners firstly suppose p after reading
the two premises and then find that the conclusion q (by ap-
plying the MP inference rule on the supposition) and ¬q (the
second/minor premise) are incompatible and thus reject the
supposition of p using reductio ad absurdum and finally con-
clude ¬p. Errors in reasoning performance are due to misun-
derstanding of the conditional statements or the application of
a wrong rule. As the endorsement of AC and DA rules cannot
be explained by mental logic, we use guessing trees for these
two inferences. It follows that implementing the mental logic
as an MPT is not possible without any guessing trees.

Probabilistic approach: The independence model
Oaksford & Chater (1994) proposed a Bayesian understand-
ing and modeling about how people interpret a conditional
and reason about it. Instead of interpreting p→ q in the clas-
sical logical sense – as material implication – human reason-
ers and their reasoning processes can be modeled as the con-
ditional probability of q given p, i.e., P(q | p). In their clas-
sical work, they proposed a dependence and an independence
model. We focus on the later: the classical independence
model (Oaksford & Chater, 1994) consists of two parame-
ters a for P(p) and b for P(q | ¬p). To fit experiments, the
best parameter values were determined by iterating through
the values 0.1, 0.3, 0.5, 0.7, and 0.9 for both a and b as in
Table 1 of Oaksford & Chater (1994). The model accepts a
specific conditional probability only if the computed value is
above a given threshold. We present here an updated version
(Oaksford et al., 2000; Singmann et al., 2016). The model
assumes that reasoning is done through assessing the prob-
ability values of conclusions based on the reasoner’s back-
ground knowledge. More precisely, when asked to evaluate
an inference such as MP, “Given ‘If p then q’ and ‘p’, how
likely is q?”, individuals consult their background knowledge
regarding p and q and assess the conditional probability of the
conclusion q given the minor premise p. Thus, endorsement
E is modeled as E(MP) = P(q | p). The joint probability dis-
tribution of p and q, and their negations ¬p and ¬q can be pa-
rameterized in terms of three parameters, a = P(p); b = P(q),
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Table 1: Oaksford et al. (2000) model of probabilistic
conditional reasoning (see, Singmann et al., 2016).

q ¬q
p a · (1− e) a · e
¬p b−a(1− e) (1−b)−ae

Note. The table represents the joint probability distribu-
tion for a conditional, “if p then q” by three parameters:
a = P(p), b = P(q), and e = P(¬q | p).

and e = P(¬q | p) as shown in Table 1, which leads to the fol-
lowing model predictions (cp. Singmann et al., 2016):

E(MP) = P(q | p) = (1− e) (1)

E(MT) = P(¬p | ¬q) =
1−b−ae

1−b
(2)

E(AC) = P(p | q) =
a(1− e)

b
(3)

E(DA) = P(¬q | ¬p) =
1−b−ae

1−a
(4)

Many experiments, however, provided reasoners with
premise information that they were asked to consider as
true. These formulae can thus be reduced for our prob-
lems – the probability of the given fact in the experiments
can be assigned as 1. Hence, it holds for the example
P(“I catch the bus”) = 1. We can then represent the simpli-
fied independence model and transform it into an MPT. Con-
sider modus ponens, with P(p) = 1. As a = P(p), we have
a = 1. Hence, the formula is reduced to 1− e. For MT,
P(¬q) = 1, it follows P(q) = 0, and hence b = 0. Thus,
(2) above is reduced to (1− ae). For E(AC) for AC with
b = P(q) = 1, Equation (3) is reduced to a(1−e). For E(DA)
holds, a = P(p) = 0, and (4) above is reduced to (1−b).

The suppositional theory
The suppositional theory proposed by Evans & Over (2004)
is a hybrid theory with the application of probability assump-
tion akin to the independence theory and dual process theory,
together with some rules in the field of pragmatics. Simi-
lar to the independence theory, it emphasizes the cases where
we have a high probability of the consequent given the prob-
ability of the antecedent. Contextual effect found in a vast
amount of studies in conditional reasoning can be explained
by pragmatic inferences. Finally, the theory has a dual sys-
tem incorporated: While immediate inferences (System 1) are
solely drawn by the probability account, System 2 inferences
are possible and lead to deductively valid answers (cp. Ober-
auer, 2006).

Theories of Conditional Reasoning as MPTs
Our main goal is to assess the empirical adequacy of the
aforementioned cognitive theories. Towards this goal, we
need to represent the theories formally. Following a sim-
ilar approach by Oberauer (2006), we formalize the theo-

Figure 1: Two examples for MPTs for the mental model
theory (without directionality). The left tree represents the
model for the modus ponens; while the right represents the
model for the modus tollens, where an additional flesh-out
process from the initial mental model is necessary.

ries as multinomial processing tree (MPT) models (Riefer &
Batchelder, 1988).

MPT models are a class of cognitive models for categori-
cal data that describe observed response frequencies resulting
from latent cognitive states. The probabilities that are repre-
sented at the edges in the graph for transitioning a cognitive
states are estimated from data. At the same time, the afore-
mentioned cognitive theories must explain why the answers
of the participants often deviate from the logically correct so-
lution as well. There are two ways of how responses are gen-
erated by a reasoner: a reasoning process, the process is de-
scribed and/or predicted by a cognitive theory and a guessing
process, a process that is not explained in a cognitive theory
and, in principle, any possible response can be given.

We represent the reasoning and guessing parts of the theo-
ries by multinomial process trees as we outline in the follow-
ing. For each of the four inference schemas (MP, MT, DA, AC)
we develop separate MPT trees. As the theories assume dif-
ferent cognitive processes for the four inferences, we model
them as four MPTs. An additional advantage is that this en-
ables us to investigate the differences in processing of the four
inferences, see Fig. 1 for an example for MP and MT for the
mental model theory. Each root node contains a reasoning pa-
rameter r that is responsible for estimating responses that are
generated by the reasoning subtree and consequently (1− r)
as generated by the guessing subtree. The guessing tree is
identical for all theories, with a parameter g to guess a yes-
answer and (1− g) a no-answer. In the reasoning tree, we
have theory specific nodes that provide specific answers by
transitioning through them. In the case of modus ponens (the
most simple case), the correct answer can be read out via go-
ing along the reasoning branch, where an initial model is built
(the model p q). In the case of modus tollens, a full explicit
model needs to be built (parameter f ) for a correct answer and
if it is not built (1− f ), the decision is solely made by the ini-
tial mental model. Hence, these process models do reflect as-
sumed cognitive processes and they are similar enough to for-
malizations as proposed for syllogistic reasoning (cp. Klauer
et al., 2000). In the following sections, we will investigate
all previously mentioned theories: The mental model theory
with and without directionality, the mental logic theory, the
probabilistic theory and the suppositional theory – formalized
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as MPTs and the respective extended models with a reasoning
part and a guessing tree (as described above). we systemat-
ically replace the reasoning parts by pure guessing trees (we
will describe in detail later in the section “MPT analysis for
model comparison”). We can assume that some reasoning
subtrees may even have a negative impact, so we systemat-
ically eliminate for each theory the reasoning subtree in the
extended models.

The Experimental Data
Selection of the experimental studies
We searched the literature and the internet for articles on
classic conditional reasoning and non-monotonic conditional
reasoning and reporting at least the number of participants
as well as absolute number of reasoners or percentages for
all four inference types (MP, MT, DA, AC). Extensive search
of studies in Pubmed, Science Direct, Google and Google
Scholar with the keywords “(conditional reasoning) or (con-
ditionals) or (prepositional reasoning) or (counterfactual) or
(alternatives) or (enabler) or (disabler)” was performed. Most
of the articles are not suitable for this analysis as the endorse-
ment percentages/frequencies of the four inference rules were
not provided. We have included all experiments reporting the
four inference types as within subject factor and the questions
presented to participants was in the form of “what (if any-
thing) follows (necessarily)?” or “think about what conclu-
sion you can draw from the information” or “assess whether
these conclusions follow logically from the information” or
“Therefore, ”; with two to four answer options provided to
participants. For MP and DA, the answer options were “q”,
“¬q“ (and “may or may not q” and “not sure” or “nothing
can be concluded”); and “p”, “¬p“ (and “may or may not
p”, and “not sure” or “not nothing can be concluded”) for MT
and AC. We have excluded 3 experiments with special ma-
nipulation of the content of the conditional statements. This
selection eliminates as possible the factors due to experimen-
tal design. Finally, 16 studies of indicative conditionals (first
premise being in the form of “If p then q”; 45 experiments
in total) and 6 studies of counterfactual conditional reasoning
(12 experiments in total) of adult data were included1. We
need the frequencies of participants endorsing each inference
for our later analysis. For studies providing the endorsement
percentages, we computed the frequencies by the percentages
and the number of participants.

Reliability of data
We assessed the overall homogeneity for each inference by
examining the respective rank orders of the endorsed infer-
ences using Kendall’s coefficient of concordance (W), which
ranges from 0, no consensus, to 1, perfect consensus. The
datasets are rather homogeneous for both indicative condi-
tionals and counterfactuals, W = .617, p < .001 and W =
.767, p < .001, respectively.

1For studies and MPTs, see: www.cc.uni-freiburg.de/data

Conditional reasoning with counterfactuals
Most of the studies on counterfactual reasoning were car-
ried out by Byrne and colleagues (Byrne & Tasso, 1999;
Thompson & Byrne, 2002). Usually, conditional statement in
subjunctive mood (for native alphabetic languages speakers)
were presented to participants to indicate the counterfactual
(unreal) property of the situation described in the statement.
In these studies, the two negative inferences, DA and MT, usu-
ally had a much higher endorsement percentages in the coun-
terfactual than factual condition (but the endorsement per-
centages of the two positive inferences remained statistically
the same). The results support the hypothesis of Byrne and
colleagues that reasoners consider two alternatives when they
encounter such counterfactual arguments, namely the fact and
supposed “fact” (also known as the “presupposed factual real-
ity” and “counterfactual conjecture”). Reasoners constructed
already the following two models as the initial mental model
and thus the two negative inferences are more likely to be
drawn:

p q (counterfactual conjecture)
¬p ¬q (presupposed factual reality)

Besides, there are three other proposals applicable to coun-
terfactual reasoning. For example, Lewis and Stalnaker’s
possible world semantics of modal logic (Lewis, 2013; Stal-
naker, 1968). They proposed that reasoners assume another
world which is most similar to the real world. They perform
counterfactual reasoning through reasoning about this most-
similar world. However, many researchers criticized the as-
sumption that ordinary people do not judge the closeness of
the world/possibility. We have only fitted the models of the
adapted mental model theory for counterfactuals (both with
and without directionality) as this theory explicitly makes as-
sumptions about cognitive processes in human reasoning.

MPT Analysis for Model Comparison
We fitted each model to the aggregated data via the maximum
likelihood method using MPTinR (Singmann & Kellen, 2013).
The package uses four measures, and the smaller their val-
ues, the better the fit between a model and the data: First, G2

measures the goodness of fit using the maximum-likelihood
method, which maximizes the likelihood of the frequencies
of observations given the parameter values. It underlies the
remaining three measures. Second, the Akaike information
criterion (AIC) indicates how much information is lost when
a model represents the process that generates the data, taking
into account both its goodness of fit and number of param-
eters. Third, the Bayesian information criterion (BIC) is a
Bayesian analog of AIC that selects the best model from a fi-
nite set of them, penalizing models according to the number
of their parameters. Fourth, the Fisher information approxi-
mation (FIA) measures the amount of information that an ob-
served frequency carries about a parameter which models the
observation. It provides a good measure of the flexibility of a
cognitive model. We evaluated the five cognitive theories and
some adaptation of the theories systemically. Firstly, we com-
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pared the MPT implementations of different cognitive theo-
ries (the original version) with only one guessing trees exten-
sion at the root node, see the (1−r)-paths in Fig. 1. Secondly,
we systematically eliminated the reasoning subtree, the r-path
in 1, 2, or 3 of the inference schemas MT, DA, and AC and kept
the guessing tree only. If we replaced the reasoning subtree
for the MT we denote it as Guess2. If we replace the DA and
AC reasoning subtree, we denote it as Guess34. The reason is
to investigate the positive or negative impact of the reasoning
tree. The MP reasoning tree is never replaced by a guessing
tree as most humans do not have difficulty in drawing MP
inference and the sole use of guessing would thus be unnec-
essary and redundant. We use a PureGuess model which ex-
clusively consists of guessing trees (no reasoning part in any
of the four inference schemas) as the base line. The impact of
the inference part and how it may disguise the processes can
then be evaluated – by comparing if the reasoning part of the
theories may add something substantially or not in the infor-
mation criteria. We repeat the two analysis steps with datasets
from counterfactual reasoning to check if the best models for
indicative conditionals apply to counterfactual reasoning too.

Theory evaluation
Our first analysis deals with testing the predictive power of
the aforementioned cognitive theories for human conditional
reasoning. Table 2 reports the results of the four theories (ex-
cluding the mental logic as it only makes predictions for MP
and MT) and additionally the pure guessing model PureGuess.
The lower the G2, AIC, BIC, and FIA the better the models
are. Table 2 shows that the theory (extended with a guessing
subtree) which fits best the data is the mental model theory
with directionality, which differs from the suppositional the-
ory in a better FIA. The PureGuess model performs worst,
i.e., this shows that the reasoning parts of the theories con-
tribute in explaining the data considerably.

Table 2: Results of MPT fits to the aggregated data set of
classical conditionals, original version

No. of
Model parameters G2 FIA AIC BIC
MMTd 4 16.6 3 25 53
SUP 4 16.6 21 25 53
MMT 3 139.5 81 146 167
IND 3 492.5 * 499 520
PureGuess 1 653.1 331 655 662

Note. SUP = suppositional theory; MMTd = mental model
theory with directionality; MMT = mental model theory;
IND = independence model. PureGuess = pure guessing
trees for MP, MT, AC, and DA. * The independence model
is not a binary MPT so FIA cannot be computed.

Impact of guessing
In the next analysis, we investigated what happens if we sys-
tematically eliminate inference parts according to the theo-

ries. Table 3 reports the 5 best fitting theories out of 34 the-
ories. Except the mental logic (with only 2 variants: ML-
Guess34 and ML-Guess234), all the other 4 theories have 8
variants (total = 4*8 + 2 = 34). The models are ordered re-
garding the best values for the information criteria BIC, AIC,
and FIA, as the G2 does not take the number of parameters or
the model size into account. Table 3 shows that three models
have the best performance regarding the information criteria:
The mental model theory with directionality and exclusive
guessing at MT (MMTd-Guess2), the mental model theory
with exclusive guessing at DA and AC (MMTd-Guess34) and
the mental logic with exclusive guessing at DA and AC(as in
the original theory by Rips, ML-Guess34). The selection val-
ues with these pure guessing trees are much better compared
to the original versions. This indicates that theoretical ac-
counts on DA and AC may have to be revised.

Table 3: Results of the MPT fits to the aggregated data set of
indicative conditionals by replacing reasoning by guessing.

No. of
Model parameters G2 FIA AIC BIC
MMTd-Guess2 3 1.6 12 8 29
MMT-Guess34 3 1.6 12 8 29
ML-Guess34 3 1.6 12 8 29
IND-Guess2 4 0 * 8 37
SUP-Guess2 4 0 15 8 37

Note. SUP = suppositional theory; MMTd = mental model
theory with directionality; MMT = mental model theory;
IND = independence model. Guess2 = MT replaced by the
guessing tree; Guess34 = AC and DA with guessing tree
only. * FIA cannot be computed for non-binary MPTs.

Counterfactual conditional reasoning
For the third analysis, we tested the performance of the MPT
trees of the original theories for conditional reasoning on
the counterfactual data. We constructed other sets of MPT
models for the mental model theory (cMMT: without direc-
tionality and cMMTd: with directionality) according to the
aforementioned account of Byrne, which assumes that peo-
ple build two initial mental models for counterfactuals. But
both versions of mental model theories show similar perfor-
mance. For the counterfactual data, however, the best models
are now the independence model with exclusively guessing at
the modus tollens (cf. Table 4).

General discussion
While almost all cognitive theories of reasoning aim at ex-
plaining human reasoning with conditionals, systematic com-
parisons are rare. We implemented different theories as multi-
nomial process trees and systematically extended each of the
theories with guessing trees and evaluated the goodness-of-fit
of (i) the original theories, (ii) the extended models by sys-
tematically replacing reasoning subtrees by guessing trees for
one to three of the MT, DA, AC-patterns, and (iii) models on
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Table 4: Results of the multinomial model fit to the aggre-
gated counterfactual data

No. of
Model parameters G2 FIA AIC BIC
IND-Guess2 4 0 * 8 31
SUP-Guess2 4 0 12 8 31
MMTd-Guess2 3 6.5 12 13 30
cMMTd-Guess2 3 6.5 12 13 30
ML-Guess34 3 6.5 12 13 30

Note. Models are ordered for the information criteria AIC,
BIC, and FIA. Guess2 = MT with guessing tree only; Guess34
= AC and DA with guessing tree only.

counterfactual theories. We performed additionally a litera-
ture search and found a high homogeneity of the data. Most
of the reported studies asked the reasoner to hold the condi-
tional and the categorical fact as true. The best fitting theory
regarding the information criteria AIC, BIC, and FIA (that
penalize additional parameters) in case (i) and (ii) is the men-
tal model theory with directionality. For counterfactuals, the
best model is the independence model with the modus tollens
replaced by pure guessing. Such a difference can be expected
as models that perform well in one domain do not necessar-
ily perform well in another. Secondly, the strength of the
Bayesian accounts is to represent the difference in strength
between antecedent and consequent, which is rarely reflected
in most experiments. Another interesting finding is that when
comparing models with reasoning and guessing versus guess-
ing alone, some theories are in fact better to assume that some
patterns are in fact guessed. In line with the finding of Ober-
auer (2006), guessing is a very important part in conditional
reasoning. The goodness of fit (wrt. AIC and BIC) improves
by replacing parts of the theories by guessing in one or more
of the three inference rules, especially for MMT. One phe-
nomenon is that reasoner either guess for both AC and DA
or MT alone. This might suggest that the processing of MT
inference might not be the same as that of the two invalid
inferences, AC and DA. Current reasoning theories underes-
timate the influence of guessing on participant’s responses –
especially in reasoning with conditionals.
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Abstract

Whether the mental representation of reasoning problems is
spatial or visual (or mixed) in nature has been the subject of
considerable debate for years. The visual impedance effect
found in Knauff & Johnson-Laird (2002) has provided us with
new insights into this question. The study found that the form-
ing of excessive visual images induced by the premises can
impede relational reasoning. This study aimed at investigat-
ing the factor of complexity on the visual impedance effect in
two folds, namely number of term series (i.e., total number of
premises plus the conclusion) and whether the entities in the
premises are presented in a continuous manner (i.e., whether
the subject of the argument is the same as the object of the
previous argument). In line with previous studies, relational
category, number of term series and successiveness were the
main factors of the response time. Results of the parameter
estimation by generalized estimating equation showed that vi-
sual relations, 5-term series and discontinuous problems were
the only significant parameters. The results again suggested
that irrelevant visual images can hinder reasoning processes,
in addition to the complexity of the problem. We proposed a
combined cognitive model of ACT-R and PRISM for the find-
ings in this study.

Keywords: Visual impedance effect; generalized estimating
equation; PRISM; ACT-R.

Introduction
Reasoning is one of the complex cognitive processes which
requires several fundamental processes and the role of work-
ing memory is irrefutable (e.g., García-Madruga et al., 2007;
Barrouillet & Lecas, 1999). The multicomponent model of
working memory proposed by Baddeley and colleagues is the
most influential one. They proposed a model with four com-
ponents, namely the central executive, the phonological loop,
the visuospatial sketchpad and the episodic buffer (Badde-
ley & Hitch, 1974; Baddeley, 2000). The central executive
acts as the managing unit which supervises the integration
of information and coordinates the two “slave systems” (the
phonological loop and visuospatial sketchpad, which act as
short-term storage units for information) and other cognitive
processes. The phonological loop stores phonological infor-
mation while the visuospatial sketchpad stores visual and spa-
tial information, which can be further divided into the visual
subsystem (for visual information such as color and shape)
and the spatial subsystem (for information related to location
or space, e.g., Sima et al., 2013). This distinction is supported
by the findings in behavioral experiments with a dual-task
paradigm (that visual tasks were more hindered by a visual
secondary task than a spatial one but spatial tasks by a spatial
secondary task than a visual one (e.g., Klauer & Zhao, 2004))
as well as functional brain imaging studies (e.g., Smith et al.,
1995).

There are proposals of individual differences in reasoning
strategy that some people reason with a verbal and propo-
sitional while others reason with visuospatial representation
(e.g., Ford, 1995; Bacon et al., 2007). However, the focus
of this study will be on the representation of the problems
instead of the strategy (see also the two-streams hypothesis –
the ventral and dorsal streams for visual and spatial locational
processing respectively (Goodale & Milner, 1992; Smith et
al., 1995)). On the other hand, the presence of the two sep-
arate subsystems of the visuospatial sketchpad may suggest
two possible representation formats of the reasoning prob-
lems during processing.

Some studies showed that the mental representation of rea-
soning problems can be either visual or spatial (Landau &
Jackendoff, 1993; Huttenlocher, 1968). If the mental repre-
sentation is visual, visual-rich materials should enhance the
reasoning performance as some extra effort is required to rep-
resent visually opaque objects. However, many studies did
not find this results (e.g., Sternberg, 1980). For example, sim-
ilar behavioral performance was found for both abstract and
concrete problems (Johnson-Laird et al., 1989; Newstead et
al., 1986). However, the first study on visual images and rela-
tional reasoning by De Soto et al. (1965) found that the ease
of visualizing the materials was a significant factor of the per-
formance in their deductive reasoning experiment of “3-term
series” problems:

Ann is taller than Beth.
Cath is shorter than Beth.
Who is tallest?

Only the relations between A and B as well as B and C were
given. Participants had to infer the relation between A and
C from the two given relations. In other studies, participants
were asked to evaluate the validity of the conclusion (e.g.,
Ann is taller than Cath) given the premises. The results were
replicated in the studies by Shaver et al. (1975) and Clement
& Falmagne (1986).

On the other hand, Knauff & Johnson-Laird (2002) found
the exact opposite phenomenon – the visual impedance effect
that excessive representations of visual information can slow
down the reasoning process. They then concluded that repre-
sentation of reasoning problems should be spatial in nature.
Visual representations are assumed to be visual mental im-
ages which resemble the real object (Knauff & May, 2006);
while spatial representations relate objects in spatial organi-
zation. By default, visual relational problems are represented
visually while spatially for spatial problems after the compre-
hension process of the reasoning problems. Therefore, spa-
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tial problems are ready for reasoning processing if reasoning
takes entities which are represented spatially. On the other
hand, visual problems need an extra step to represent them
spatially. Furthermore, the irrelevant visual information (to
reasoning processing) can take up cognitive resources for and
compete with the reasoning processes and thus causing an
overall longer processing time. They argued that the oppo-
site results in some previous studies were due to the neglect
of the two possible different representations – visual and spa-
tial: that some “visual” items were also “spatial”. Therefore,
the opposite results to the visual enhancement proposal were
found when the target words of the relational problems were
carefully controlled to visual (e.g., cleaner-dirtier: easy to vi-
sualize but difficult to form a spatial representation), visu-
ospatial (e.g., above-below: easy to form spatial representa-
tion) and control (e.g., better-worse: difficult to visualize and
form a spatial representation). They then revised the men-
tal model theory1 that mental models should be iconic spatial
in nature, rather than visual (in addition to the fact that de-
picting abstract relations in a spatial manner is plausible and
possible). The hypothesis was supported by further studies
with blind people Knauff & May (2006) and on individual
differences (“verbalizers” versus “visualizers” by Castañeda
& Knauff, 2013).

Another source of reasoning difficulty depends on the num-
ber of mental model operations that are necessary to integrate
information into a spatial model. The PRISM-model (Ragni
& Knauff, 2013) formalizes these operations to build a pre-
ferred and alternative mental models (in cases which the de-
scriptions allow for several models) and it provides a cog-
nitive complexity measure2 to predict and explain reasoning
difficulty for model-based complexity.

This study aimed to investigate the influence of task com-
plexity on the visual impedance effect in relational deductive
reasoning tasks. We varied the task complexity in two ways.
Firstly, besides the 3-term series problems, we included also
the 4-term (3 premises) and 5-term series (4 premises) prob-
lems. Difficulty is expected to increase with the number of re-
lations per task. Secondly, difficulty in terms of premises in-
tegration was varied. Discontinuous and continuous premise
order problems (successiveness) were presented. For contin-
uous problems, the subject of the premise sentence was the
same as the object of the previous premise, except for the last
premise preceding the conclusion, see Table 2 for examples.
For continuous tasks, the information of the first premises can
be integrated directly but in discontinuous tasks, the integra-
tion process cannot be proceeded until the presentation of the
last premise. The information of previous premises has to be
stored in the working memory for further processing. There-
fore, problems presented in discontinuous order are expected
to require more cognitive effort. We analyzed these three fac-

1The Mental Model Theory (e.g., Johnson-Laird & Byrne, 1991)
proposes that reasoners apply three stages: premise comprehension,
a subsequent integration to form an initial model, and conclusion
validation by searching for counterexamples.

2The model: http://spatialmentalmodels.appspot.com/

tors of difficulty/complexity (relational category, number of
terms and successiveness) in terms of both the percentage of
correct responses and response time. We hypothesized that
only the number of terms and successiveness would affect
the percentage of correct responses but not the relational cat-
egory. However, all the three factors were expected to affect
the response time as they can all slow down the reasoning pro-
cesses. If the two complexity factors can affect the response
time of visual relational problems, this might suggest that the
underlying processes are the same, or at least involved.

The remainder of the article is structured as follows: In the
following section, we present two experiments that investi-
gate the visual impedance effect and model complexity. We
then present a combined cognitive model in the next section.
A general discussion concludes the article.

Experiments
One criticism of previous studies is that the target words in the
experiments were not good examples of the categories, i.e.,
some “visual” items were also “spatial”. In order to eliminate
this potential limitation, we performed a preliminary survey
to select two pairs of words for each of the four categories.
We selected 37 pairs of antonyms (74 words) that may be-
long to the categories according to our intuition. They are all
frequent words in daily usage. Two pairs of words for each
category were selected to construct the reasoning problem set
according to the results of the word survey.

Word Survey
Purpose of this word survey is to select the best two pairs of
antonyms of adjectives describing the 1. visual, 2. spatial,
3. visuospatial, and 4. non-visual and non-spatial features
of a noun. Knauff & Johnson-Laird (2002) have shown that
the difficulty in forming spatial representation of words can
be independent of that in forming visual images. Word pairs
were then selected according to the criteria stated in Knauff
& Johnson-Laird (2002).

Participants
The survey was performed on the Amazon Mechanical Turk
platform. 97 native English speaker participated in the study
(mean age = 36.8 years, SD = 13.48; 56 females). They re-
ceived a nominal fee for their participation.

Materials and Design
We tested 37 pairs of antonyms such as fatter-thinner and
below-above. Each trial consisted of one pair. Participants
had to rate the ease of forming detailed visual images and spa-
tial representation (position of the object in space) for each of
the two words, i.e., giving four ratings in each trial. They
were asked to move separate sliders for the two scales to in-
dicate their responses, from 0 (extremely easy) to 100 (ex-
tremely difficult).

Results
We ranked the 74 words according to the means and medi-
ans of the two ratings (visual and spatial) respectively and

116



Table 1: Mean rating for the ease of forming a visual image
and a spatial representation for the two pairs of words.

Visual Spatial
Word Pairs (mean) (mean)

Visual prettier–uglier 15.9 72.2
cleaner–dirtier 15.3 67.7

Visuospatial above–below 17.8 18.0
in front of–behind 17.6 15.5

Spatial right–left 25.4 17.6
east–west 28.8 19.0

Control kinder–crueler 42.0 68.8
braver–more cowardly 43.6 70.7

Overall 29.7 51.7

Note. Range: 0 (extremely easy) to 100 (extremely difficult).

selected two pairs for each of the four categories. The two
visual pairs are at the highest rank for the visual rating but
are relatively low for the spatial rating. We could not find
two pairs which were high for the spatial rating but very low
for the visual rating and thus we chose two pairs which are
ranked high for the spatial rating but not too high for the vi-
sual rating as the spatial pairs. The visuospatial pairs are at
a high rank for both the visual and spatial ratings. We then
chose two control pairs which were ranked relatively low for
both the visual and spatial rating. Please refer to Table 1 for
the ratings of the words we selected for each of the categories.

Reasoning Experiment
In this experiment, we investigated if the two other factors
(complexity) of reasoning processing can affect reasoning
performance and along with the visual impedance effect. The
complexity was varied by increasing the number of premises
(3-term, 4-term and 5-term series) and the successiveness of
the entities in the problems (continuous or discontinuous).
Visual relational category problems were expected to have
the longest response time, then the control, and finally the vi-
suospatial and spatial problems. 5-term discontinuous visual
problems were expected to have the longest response time
among the 24 possible condition combinations (4 category x
3 different term series x continuous or discontinuous).

Participants
96 native English speakers, different from the previous word
survey, participated in the experiment (mean age = 36.35
years, SD = 11.96; 65 females) via the same platform. They
received a nominal fee for their participation.

Materials and Design
We used the 8 pairs of words listed in Table 1 to construct
48 relational reasoning problems. We adopted a 4 (category:
visual, spatial, visuospatial, and control) x 3 (term: 3-term,
4-term and 5-term) x 2 (continuous or discontinuous) x 2
(valid or invalid) design. All factors were within-subject as

we were not interested in individual differences in this study.
Therefore, there were 12 problems for each category and 16
problems for each term condition. We used the same animal-
nouns for all the problems: ape, cat and dog for 3-term prob-
lems, ape, cat, dog and bird for 4-term problems and ape,
cat, dog, bird and fish for 5-term problems. Half of the prob-
lems were continuous that the subject (the first noun) of the
premise was the same as the object (last noun) of the previ-
ous premise, except for the last premise that either the subject
or object was the same as the one in the previous premise
(depending on the validity of the problem). Please refer to
Table 2 for examples of the problems. The relational target
word of the last premise was always the antonym of the previ-
ous premise(s). Each term in the antonym pair was presented
equally often in the premises and conclusions. Each premise
and the conclusion were presented on separate screens and the
participants had to press the spacebar in order to read the next
premise or the conclusion (offline self-paced design). The
premises were presented in black letters while the conclusion
was in red. Participants were asked to evaluate whether the
given conclusion followed necessarily from the premises, by
pressing the J (for yes) and D (for no) keys. Two practice
trials were presented before the experiment. The relational
target words (older-younger and faster-slower) in the prac-
tice trials were not repeated in the experiment. Reading time
for each premise, response time to the conclusion and the re-
sponse were recorded.

Results
Regarding the percentage of correct responses, the overall re-
sult was 69%. We have performed a 4 (category: visual, spa-
tial, visuospatial and control) x 2 (term: 4-term or 5-term) x
2 (successiveness: continuous or discontinuous) x 2 (validity:
valid and invalid) repeated measure ANOVA, excluding the
3-term problem (as there was no continuous and discontinu-
ous distinction for the 3-term problems). The repeated mea-
sures ANOVA with a Greenhouse-Geisser correction showed
that only successiveness and validity were significant main
within-subject effects for percentage of correct responses,
successiveness: F(1,98) = 12.493, p = .001, η2

p = .113; va-
lidity: F(1,98) = 7.564, p = .007, η2

p = .072. The post-hoc
Wilcoxon Signed Ranks Test showed that valid problems had
a significantly higher percentage of correct responses than in-
valid ones as well as continuous than discontinuous problems,
Z = 2.350, p = .019 and Z = 3.546, p < .001, respectively. In
line with previous studies, we did not find any effect due to
the relational category of the target words. However, it was
unexpected that the number of terms did not affect the per-
centage of correct responses.

Only response times for correct responses were included
in the following analyses. We excluded also the response
times which were not within +/− 2 standard deviations of
the mean response time of individual participant. Regarding
the response time, we firstly tested if the validity was a sig-
nificant factor of the response time. The Wilcoxon Signed
Ranks Test showed that there was no significant difference
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Table 2: Examples of 3-term and 5-term series. Conclusions can be valid (= v) or invalid (= i).
3-term series 5-term series

Continuous order Discontinuous order
Premise 1 The ape is dirtier than the cat The bird is right of the ape The ape is braver than the cat
Premise 2 The dog is cleaner than the cat The ape is right of the fish The dog is braver than the fish
Premise 3 The fish is right of the cat The bird is braver than the ape
Premise 4 The dog is left of the cat The dog is more cowardly than the cat
Conclusion The ape is dirtier than the dog? (v) The bird is right of the dog? (v) The fish is braver than the bird? (i)

between the response time for valid and invalid problems,
Z = .837, p = .402. Therefore, we aggregated these 2 condi-
tions in order to simplify the following analyses. As there was
no successiveness distinction for the 3-term condition, we
performed a 4 (category: visual, spatial, visuospatial and con-
trol) x2 (term: 4-term or 5-term) x2 (successiveness: contin-
uous or discontinuous) repeated measure ANOVA, excluding
the 3-term problems. The repeated measures ANOVA with
a Greenhouse-Geisser correction showed that category, term
and successiveness were all significant main effects of re-
sponse time, category: F(1.899,34.178) = 13.162, p < .001,
η2

p = .422; term: F(1,18) = 36.680, p < .001, η2
p = .671;

successiveness: F(1,18) = 21.032, p < .001, η2
p = .405.

However, none of the interaction effects were significant.
We then performed a separate one-way repeated measure
ANOVA with a Greenhouse-Geisser correction for the 3-term
problems regarding the factor category. The results suggested
that response times for different category conditions were
significantly different, F(2.316,215.426) = 7.504, p < .001,
η2

p = .075. The response times are shown in Table 4.

As our aim was not to investigate individual differences,
but rather factors on reasoning processing and related to vi-
sual impedance effect, all the aforementioned factors were
within-subject factors. Regression analysis is not recom-
mended for repeated measure data. We then used a general-
ized estimating equation (GEE) to estimate the parameters on
response time. GEE was used to estimate the parameters of a
generalized linear model with a possible unknown correlation
between outcomes (Pickles, 1998) and is suitable for repeated
measure data. GEE attempts to treat the within-subject co-
variance as a nuisance and model only the mean response. In
additional, it is not necessary to specify the covariance struc-
ture correctly for reasonable estimates of regression coeffi-
cients and standard errors as it is not modeled and thus is rel-
atively more flexible. GEE was used to analyze the data with
response time as the dependent variable and category, term
and successiveness as the factors. In order to simplify the
model, only the 3 main effects were included, as the results
of the repeated measure ANOVA suggested no significant in-
teraction effects. The model suggested that for the response
time RT = 112118+2224 ·visual+2354 ·(5−term)+1145 ·
discontinous. Visual, 5-term and discontinuous problems re-
quired longer processing time with 5-term and visual required
about the double time than discontinuous problems. We could
actually hypothesize the relative response time for the prob-

lems of each of the condition combinations according to the
equation, but space in this article does not permit an extensive
discussion here. Please refer to Table 3 for the results.

A Cognitive Model
We investigated in one experiment two different often repli-
cated effects: The (dis-)continuity effect (successiveness) and
the visual impedance effect that both have an implication on
the reasoning time. While the former can be explained by the
PRISM-model (Ragni & Knauff, 2013), the later has been
recently explained by a model of memory effect in ACT-R
(Albrecht et al., 2015). PRISM is a computational cognitive
model that can be used to simulate and explain how spatial
mental models are constructed, inspected, and varied in a spa-
tial array that functions as if it were a spatial working mem-
ory. A spatial focus inserts tokens into the array, inspects the
array to find new spatial relations, and relocates tokens in the
array to generate alternative models of the problem descrip-
tion, if necessary. Each of these focus operations in PRISM
imply 1 standard cost (see website in footnote 2), defining
a cognitive complexity measure. It does not reflect, how-
ever, how visual or spatial the relations are – it calculates for
each problem the costs necessary for performing the associ-
ated mental model operations to reason about this problem.

While the ACT-R model of memory effect does not neces-
sarily reflect mental model operations, it is compatible with
PRISM (Albrecht et al., 2015). The cost function for PRISM,
combined with an additional costs for a visual representation
(1 standard unit) and a reduction cost of -0.5 standard unit for
spatial or visuospatial representation compared to the control
problems (as the spatial representation is already built during
the comprehension process), can be expressed by the follow-
ing cost function:

cost(x) = 5+1 · visual −0.5 · visuospatial −0.5 · spatial

+2 · (#terms−3)+2 ·discontinuous

with four boolean variables (i.e., 1 if true else 0) visual,
visuospatial, spatial, and discontinuous. #terms represent
the number of terms in the problem. While we are work-
ing on a computational cognitive modeling incorporating the
cognitive complexity measure in the formula, the correlation
between the respective behavioral response times and values
(costs) calculated by the cost function is very high (Kendall’s
τ = .974, p < .001). This makes the effects on building and
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Table 3: Results of the parameter estimation by the Generalized Estimating Equations.

Parameter Estimates
Parameter β Std. Err. 95% Wald CI Hypothesis Test

Lower Upper Wald χ2 df p-value
(Intercept) 12051 669 10739 13363 324.172 1 .000
Visuospatial 338 631 -898 1574 .287 1 .592
Visual 2633 772 1121 4146 11.647 1 .001
Spatial -21 355 -718 676 .003 1 .953
Control Redundant
5-Term 2482 446 1607 3356 30.948 1 .000
4-Term Redundant
discontinuous 1151 338 488 1814 11.593 1 .001
continuous Redundant
(Scale) 123440405

Note. β = beta coefficient; Std. Err. = Standard Error; Wald CI = Wald confidence interval.

Table 4: Mean response times (in ms) for correctly answered
problem. Response times not within +/- 2 standard deviations
of the mean time of individual participant were excluded.
Cont = continuous; disc = discontinuous.

3-term 4-term 5-term
Category cont disc cont disc
Control 9727 13791 15490 16888 18156
Spatial 9056 12254 16140 16406 17723
Visual 10972 15219 17556 19765 21016
Visuospatial 8948 12833 16295 15352 17484

keeping visual models and cognitive operations comparable
on the common ground of mental operations.

General Discussion
Knauff & Johnson-Laird (2002) suggested that visually-rich
materials can evoke extra cognitive loading due to the pro-
cessing of unnecessary visual information in reasoning which
causes the visual impedance effect; in contrast with the com-
mon belief that reasoning problems with materials which are
easier to be visualized are easier to solve, having a faster pro-
cessing speed. Representation of reasoning problems should
be spatial rather than visual according to the results. Other-
wise, visual-relational problems should be faster to solve if
the problems are represented visually. In line with the re-
sults of Knauff & Johnson-Laird (2002), we found a slower
response time for visual problems even when the complex-
ity of the problems was varied. The same trend was found
in 3-term series as well as 4-term and 5-term series for both
continuous and discontinuous problems. Moreover, we found
that the number of term and successiveness of the entities in
the problems were also factors of the response time. Only
successiveness and validity were the significant factors for the
percentage of correct responses. However, validity does not
affect the response time of the problem.

It might be possible that the phenomenon is due to more

spreading activation in memory of more (visual) features
for visually-rich relational terms Albrecht et al. (2015). As
more linked features are activated, the access time is longer.
However, we found a stronger visual impedance effect for
5-term discontinuous problem than 5-term continuous prob-
lems (with Wilcoxon Signed Ranks Test, difference between
response time for visual and control problems were signifi-
cant, for continuous: Z = 2.262, p = .024; for discontinuous:
Z = 2.809, p = .005). The impedance effect is quite possibly
affecting the same underlying processing, i.e., hindrance in
reasoning processing. If the more spreading of activation in
memory solely causes the visual impedance effect, discontin-
uous problems should not have an even slower response time
as the items in both kinds of problems were the same and they
should evoke similar activations in memory.

As suggested by the mental model theory, after represent-
ing the premises into a iconic spatial array with the seman-
tics process, where the visual impedance effect is induced,
the reasoning processes (i.e., the construction of iconic spa-
tial mental model(s), validity evaluation, and revision of the
initial model) are nonlinguistic in nature. This hypothesis
was reflected in our results. We did not find any difference
between percentage of correct responses for visual relational
problems and other relational categories. On the other hand,
successiveness and validity were significant factors. Invalid
problems had a lower percentage of correct responses as well
as discontinuous problems. It was out of our expectation that
5-term series problems were not more difficult. The differ-
ence between 4-term and 5-term series problems was very
small (4-term: 67%; and 5-term: 65%). The results suggested
that the ease in representing or forming the integrated repre-
sentation is a more important issue in reasoning.

Results of the GEE analysis were in line with those of the
repeated measure ANOVA of the response time. Both re-
sults suggested that 5-term series discontinuous visual prob-
lems had the slowest response time. Furthermore, the regres-
sion coefficient of the visual problems was biggest among
the three significant parameters which might suggest that the
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impedance due to visual processing was a more important
factor for the impedance effect on reasoning than the num-
ber of premises and successiveness of the entities.

In conclusion, our study replicated the visual impedance
effect for problems with different complexity. We found
that visual relational terms can slow down reasoning process-
ing but spatial relations can enhance reasoning in some of
our conditions. This supported the hypothesis of Knauff &
Johnson-Laird (2002) that the mental representation of rea-
soning problems should be spatial in nature. Also, the factors
affecting the complexity of reasoning problems are important
for the response time. Limitations of our study include that
we could not find any spatial relation terms that are easy to
represent spatially but difficult to visualize. In our word sur-
vey, we found many pairs which are easy to be visualized
but only few are rated to be easy to envisage spatially. How-
ever, this is one of the confounding factors of many previous
studies. Further studies include the correlation between the
easiness in visualizing the problem and the strength of the
visual impedance effect. The effect can also be tested with
other kinds of reasoning problems such as syllogisms.

Acknowledgement
Supported by DFG-projects RA 1934-2/1 and RA 1934-3/1.

References
Albrecht, R., Schultheis, H., & Fu, W.-T. (2015). Visuo-

spatial memory processing and the visual impedance ef-
fect. In D. C. Noelle et al. (Eds.), Proceedings of the
37th Annual Meeting of the Cognitive Science Society.
Pasadena, California: Austin, TX: Cognitive Science So-
ciety.

Bacon, A. M., Handley, S. J., & McDonald, E. L. (2007).
Reasoning and dyslexia: A spatial strategy may impede
reasoning with visually rich information. British Journal
of Psychology, 98(1), 79–92.

Baddeley, A. D. (2000). The episodic buffer: a new compo-
nent of working memory? Trends in Cognitive Sciences,
4(11), 417–423.

Baddeley, A. D., & Hitch, G. (1974). Working memory.
Psychology of learning and motivation, 8, 47–89.

Barrouillet, P., & Lecas, J.-F. (1999). Mental models in con-
ditional reasoning and working memory. Thinking & Rea-
soning, 5(4), 289–302.

Castañeda, L. E. G., & Knauff, M. (2013). Individual Dif-
ferences, Imagery and the Visual Impedance Effect. In
M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.),
Proceedings of the 35th Annual Meeting of the Cognitive
Science Society. Berlin, Germany.

Clement, C. A., & Falmagne, R. J. (1986). Logical reasoning,
world knowledge, and mental imagery: Interconnections
in cognitive processes. Memory & Cognition, 14(4), 299–
307.

De Soto, C. B., London, M., & Handel, S. (1965). Social
reasoning and spatial paralogic. Journal of Personality and
Social Psychology, 2(4), 513.

Ford, M. (1995). Two modes of mental representation
and problem solution in syllogistic reasoning. Cognition,
54(1), 1–71.

García-Madruga, J. A., Gutiérrez, F., Carriedo, N., Luzón,
J. M., & Vila, J. O. (2007). Mental models in proposi-
tional reasoning and working memory’s central executive.
Thinking & reasoning, 13(4), 370–393.

Goodale, M. A., & Milner, A. D. (1992). Separate vi-
sual pathways for perception and action. Trends in Neu-
rosciences, 15(1), 20–25.

Huttenlocher, J. (1968). Constructing spatial images: A strat-
egy in reasoning. Psychological Review, 75(6), 550.

Johnson-Laird, P. N., & Byrne, R. M. (1991). Deduction.
Lawrence Erlbaum Associates, Inc.

Johnson-Laird, P. N., Byrne, R. M., & Tabossi, P. (1989).
Reasoning by model: The case of multiple quantification.
Psychological Review, 96(4), 658.

Klauer, K. C., & Zhao, Z. (2004). Double dissociations in
visual and spatial short-term memory. Journal of Experi-
mental Psychology: General, 133(3), 355.

Knauff, M., & Johnson-Laird, P. (2002). Visual imagery can
impede reasoning. Memory & Cognition, 30(3), 363–371.

Knauff, M., & May, E. (2006). Mental imagery, reasoning,
and blindness. The Quarterly Journal of Experimental Psy-
chology, 59(1), 161–177.

Landau, B., & Jackendoff, R. (1993). Whence and whither
in spatial language and spatial cognition? Behavioral and
Brain Sciences, 16(02), 255–265.

Newstead, S. E., Pollard, P., & Griggs, R. A. (1986). Re-
sponse bias in relational reasoning. Bulletin of the Psycho-
nomic Society, 24(2), 95–98.

Pickles, A. (1998). Generalized estimating equations. Ency-
clopedia of biostatistics.

Ragni, M., & Knauff, M. (2013). A theory and a compu-
tational model of spatial reasoning with preferred mental
models. Psychological Review, 120(3), 561.

Shaver, P., Pierson, L., & Lang, S. (1975). Converging evi-
dence for the functional significance of imagery in problem
solving. Cognition, 3(4), 359–375.

Sima, J. F., Schultheis, H., & Barkowsky, T. (2013). Differ-
ences between spatial and visual mental representations.
Frontiers in psychology, 4.

Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schu-
macher, E. H., & Minoshima, S. (1995). Spatial versus
object working memory: PET investigations. Journal of
Cognitive Neuroscience, 7(3), 337–356.

Sternberg, R. J. (1980). Representation and process in linear
syllogistic reasoning. Journal of Experimental Psychol-
ogy: General, 109(2), 119.

120



Implementing Mental Model Updating in ACT-R 
 

Sabine Prezenski (sabine.prezenski@tu-berlin.de) 
Cognitive Modeling in Dynamic Human-Machine Systems, Department of Psychology and Ergonomics, Technical 

University Berlin, Berlin, Germany 

 

 

Abstract 

This paper demonstrates how mental models and updates of 
mental models due to system changes can be modeled with the 
cognitive architecture ACT-R using explicit mechanisms. The 
mental model building and updating is modeled with a 
representation chunk and a control chunk. The representation 
chunk holds the strategy, the expected outcome and an 
evaluation mechanism of the strategy. The control chunk holds 
information over environmental conditions and the learning 
history. This modeling approach was developed and tested for 
smartphone application tasks and then implemented in a 
dynamic decision-making task investigating strategy 
development with complex stimuli. The later task used 
different multi-feature auditory stimuli material. The modeling 
approach explained data of participants in the smartphone 
studies very well and met the trends found in the dynamic 
decision-making task. 

Keywords: ACT-R; mental model updating; general model; 
learning; dynamic decision-making, applied 

Introduction and Theory 

Our behavior is guided by our internal representation of tasks 

and situations (Norman, 1983). However, such 

representations or mental models are not static but they 

change and are adjusted, due to experience gain, 

environmental changes etc. Understanding how people 

update or adapt their mental model is relevant in many fields, 

from updates in technical systems to real-life tasks that 

require strategy learning and dynamic decision-making. The 

later investigates serial decisions. Such decisions are 

dependent on previous decisions and are made under time 

constraints in a changing environment (Edwards,1962; 

Gonzalez, 2014).  Dynamic decision-making can be seen as 

a continuous cycle of mental model updating, made up of 

conceptualization – experimentation – reflection (Li and 

Maani, 2011). In the conceptualization phase a general 

concept of the situation is obtained. Hereby, the outcome of 

potential decisions is mentally simulated. The current 

situation is compared to information in the decision maker’s 

mental model. 

New information obtained from the environment is 

integrated to develop a set of decisions. In the 

experimentation phase, these decisions are tested. The 

outcome (e.g. feedback) of the experimentation phase is 

evaluated on in the reflection phase. If the expected outcome 

is achieved (e.g. positive feedback), initial decisions are kept. 

If, the outcome is unexpected (e.g. negative feedback) the 

mental model of the decision maker is updated. Thus, 

alternatives are sought for, such as new sources of 

information. 

In real-life settings adaptations of mental representations 

of users are required in many different circumstances. 

Typical situations which require a user to update his or her 

mental model are situations leading to errors, due to 

incomplete or wrong representations. For example, if a user 

repeatedly fails to install the connection settings for the 

universities Wi-Fi, he or she needs to adjust his or her mental 

model, about how to install Wi-Fi on phones. Situations in 

which changes to the system (due to aspects outside of the 

person) make the current (in the past correct mental model) 

inadequate also require adjustment to the user´s mental 

representation. Examples for the later are a) that due to 

system-upgrades a new version of an application is launched 

or b) that past-successful strategies used in decision-making 

tasks are misleading due to environmental changes.  

Nevertheless, the core mechanisms of mental model 

adaptation should be the same for both situations. This paper 

demonstrates how mental model build-up and adjustment due 

to environmental can be addressed using the cognitive 

architecture ACT-R.  

Cognitive architectures allow computationally 

implementing theories about human cognition in a broad 

spectrum. The cognitive architecture ACT-R has been 

applied in many applied domains such as smartphone usage 

(Prezenski, Bruechner and Russwinkel, 2017) or air-traffic 

control (Raufaste, 2006) but also in more ground-based 

research (Halbrügge and Russwinkel, 2016).  

ACT-R has symbolic and subsymbolic parts which 

together produce the modeled behavior. The symbolic parts 

are chunks, production rules, buffers and modules. The 

modules resemble the architecture of the human brain. are 

specified, each of them handles different types of information 

(chunks). The chunks have slots, they store the smallest 

pieces of information. The different modules interact through 

their corresponding buffers. For example, visual information 

is processed by the visual module and its two buffers. Motor 

movement is controlled by the manual module and buffer. 

The declarative module is the long-term memory of ACT-R. 

Information for this module is retrieved via the retrieval 

buffer. The imaginal module and buffer are important for 

learning new information and can be seen as ACT-Rs 

working memory. Model steering is controlled by the goal 

module and buffer. The procedural module connects the 

modules and selects (production-) rules. These production 

rules are the core part of an ACT-R model- they govern the 

model behavior. Production-rules can be selected and 

executed, if buffer states are met. The selected production-

rule can then change the states of the modules. An example 

of a subsymbolic process in ACT-R is the activation level. 

Thus, if a production requests a chunk and more than one 
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chunk matches this request, this results in the selection of the 

chunk with the highest activation level. The activation level 

of a chunk is composed of how often it was used when it was 

last accessed and how long ago the chunk was created. There 

are many more subsymbolic processes built into the 

architecture of ACT-R (e.g. blending, partial matching). 

Subsymbolic processes are used for modeling implicit 

learning, e.g. usage of activation mechanism to 

model information that is well- known can be better retrieved 

than information that is less well-known.  

However, learning (especially in early phases) is also an 

explicit process (Tenison, Fincham & Anderson, 2016). 

Thus, the learner is deliberately processing information and 

deciding what to do next stepwise. This can be modeled by 

building of new chunks via specific production rules. They 

can represent the strategies given to a model by the modeler. 

For an overview and a discussion of implicit and explicit 

mechanisms in ACT-R in context of intuitive decision-

making see Thomson et al (2016).  

Explicit mechanisms seem especially important in mental 

model updating. According to Li and Maani (2011) mental 

model updating occurs in the reflection phase when negative 

feedback (unexpected outcome) is observed. Then new 

sources of information need to be sought for. Such processes 

require the modeler to use explicit mechanism.   

Cognitive models are useful to make precise predictions 

about theories on human cognition. Models build with 

cognitive architectures moreover allow precise prediction 

about behavior influenced by different cognitive processes. 

They try to capture cognition as a whole. Enough effort, 

modeling skills and free parameters make it possible to 

precisely match behavior of participants with models.  But 

for models to be useful. they should be able to predict data in 

other situations as well. Therefore, modelers should avoid 

using many specifications to match the data, but attempt to 

use broader concepts. A successful example for this are 

models using instance based learning (Gonzalez, 2005). 

Instance based learning is used to model intuitive decision-

making (Thomson et al, 2016). Hereby problem-solving 

instances are stored in declarative memory and decisions are 

made by retrieving these instances. The activation 

mechanism of ACT-R is used to determine which instances 

are retrieved. However, in early phases of learning and when 

previously-learned instances become invalid (due to changes 

in the environment) explicit mechanisms are needed. Such 

explicit mechanism should be constructed in a general 

manner and thus be applicable in a variety of tasks. 

Aim and Previous Work 

The aim of this paper is to show how the same modeling 

approaches and mechanisms relevant for mental model 

building and updating can be used in very different applied 

tasks. Both tasks have in common that they require the 

participants to explicitly a) learn and b) notice changes and 

thus to readjust their mental model. Otherwise the tasks are 

different, thus two ACT-R models are used. Nevertheless, 

this paper resembles a general modeling approach, since it 

demonstrates how the core model mechanisms developed in 

one study (Prezenski and Russwinkel, 2016) are applied to a 

different study (Prezenski et al. submitted). 
The first study investigated a search-and select task with 

two different smartphone applications. One application 

allows users to select items to assemble a shopping list and 

the other to select search-criteria for real-estates. Initial and 

repeated usage of these applications was investigated. 

Furthermore, users’ adaptation to changes in the applications 

due to updates influencing the menu-structure (shopping 

application) and adaptations (real-estate application) was 

studied.  
The second study examined strategy learning in an auditory 

dynamic decision-making task. In this task, multi-feature 

sounds were repeatedly presented to the participants. The task 

was to decide if the presented sound was a target or a non-

target. To solve this task a combination of features had to be 

chosen as targets. The relevance of feature combinations had 

to be learned from the feedback given in the experiment. In 

the middle of the task a uniformed switch of targets and non-

targets occurred. The task can be seen as an example for 

dynamic decision-making, because it requires participants to 

repeatedly make decisions on whether or not a stimulus is a 

target or a non-target and learn (e.g. improve their decisions) 

from feedback of the previous decisions. The decisions have 

to be made under time-constraints. Other feature-

combinations become targets at a given point in the 

experiment due to changes in the environment. 

Methods 

The methods section of this paper is structured in the 

following way: First, the core mechanisms for mental model 

building and mental model updating are described. Second, 

the results of the first study on smartphone interaction and the 

implementation of the mechanisms in the first study is 

summarized. Third, the second study on dynamic decision-

making and the transfer and implementation of the 

mechanisms is explained.  

Mechanisms 

 

Mental model building The core part of the mental model 

(or abstract representation) of a situation, strategy or solution 

is stored in the representation chunk (see figure 1). The slots 

of this representation chunk hold information on the strategy 

and the expected outcome of applying this strategy. The 

information on the strategy consists of a representation of the 

situation and the action. 

During mental model building (conceptualisation phase) 

the representation chunk needs to be placed in the imaginal 

buffer. Only here ACT-R allows chunks to be altered.  In the 

experimentation phase, the expected (or predicted) outcome 

of this representation chunk is tested and then reflected on 

(reflection phase). 
In the reflection phase, mental models can either be revised 

or strengthened. On the one hand, revision is required, if the 

outcome is different from what is expected. On the other 
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hand, if the outcome is as expected mechanisms for 

strengthening the mental model are needed. Here fore, 

explicit mechanisms are used; namely a slot that notes if a 

strategy is correct and other slots that keep track (until a 

threshold) how often a strategy was correct. Other implicit 

ACT-R strengthening mechanisms are also used, such as that 

frequently used chunks, are retrieved more often and have a 

higher activation and this again makes them more likely to be 

retrieved.   
Furthermore, as learning evolves, mental models often 

become more specific (Gonzalez and Lebiere, 2005).  For 

example, a user experienced in installing Wi-Fi on phones for 

university networks might have two or more mental models 

depending on the different types of phones the user installed 

Wi-Fi for university network in the past.  Thus, learners may 

know that a solution is only applicable for a specific situation 

(e.g. for one version of an application) such knowledge 

should also be stored in the representation chunk. 
Besides a representation of the situation, expected outcome 

and observed success (core part of the mental model), the 

building of such a model also requires some form of control 

over the environmental conditions and the learning history. 

Such information is stored in the control chunk (see Figure 

1). This chunk is kept in the goal buffer. 

  

 
Figure 1: Main chunks and slots required for mental model 

building and updating 

 
Mental Model Updating In this paper mental model 

updating refers to the modification of an established 

representation chunk, e.g. a strategy that has been successful 

in the past.  

The mechanism, illustrated in Figure 2 works the following 

way: First, the strategy of the suggested action of the 

representation chunk leads to unexpected outcome. This 

unexpected outcome is then encoded in a slot of the control 

chunk. This slot represents the uncertainty of the current 

strategy that something may have changed. The 

representation chunk is nevertheless kept as mental model 

and tested again. If following the strategy proposed by the 

representation chunk produces unexpected outcome again, 

this is noted in a slot of the control chunk. This represents that 

a change has occurred and that a different strategy needs to 

be built up from now on.  

 
Figure 2: Mental model updating process, governed by 

specified production rules. 

Studies 

In the following section the two studies, first the smartphone 

study and then the decision-making study are presented. Both 

sections first provide an overview of the tasks and material 

and then focus on how the core model mechanism from above 

are implemented respectively. 
 

1) Smartphone Application Study These mechanisms were 

implemented in a model of users search and select behavior 

via navigating two smartphone applications. This study has 

been presented in greater detail elsewhere (Prezenski and 

Russwinkel, 2016). Thus, only a brief short summary of the 

applications (material), task, participants, study-design and 

the implementation of the mental model building and 

updating mechanism is given. 

 

Material/Applications Two self-designed Android 

applications (a shopping list application and a real-estate 

application) each with two different versions were used. The 

shopping list applications differed in overall menu-depth 

(three layers vs. four layers). The real-estate application 

adapted to prior selection, this affected the menu-depth and 

the positions of some items. These applications were installed 

on Google Nexus 4.  

They are hierarchical-list style applications that support 

search and select task. Targets and subtargets are spread out 

over different pages of the applications. See Figure 3 for an 

impression of the applications. 

 

Task In the shopping-list application participants had to 

search and select shopping items via navigating through 

different pages of the application. The participants had to 

search and select targets (shopping items) via selecting 

subtargets (e.g. categories, shops) placed on different layers 

of the application.  
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Figure 3: Application layout, reprinted from (Prezenski et 

al, 2017, p. 170) 

 

In the real-estate application participants had to search and 

select search criteria for real-estates via selecting different 

subcategories which were again placed on different layers of 

the application. 

 

Study-Design The design in the four substudies was similar. 

In the shopping-list study the participants were required to 

search for the same nine items for four times. In the first two 

blocks, they used one version of the application (either three 

or four layers) in the last two blocks the version “updated” 

and they had to use the other version. They were not informed 

about the occurrence of a version switch. In the real-estate 

study the participants were required to search for either a 

house or an apartment with six or seven other criteria (e.g. 

specific size, rent) and after two blocks they had to search for 

the other one twice (e.g. those who searched for a house twice 

had to search for an apartment and vice versa). Depending on 

the pre-selection of house or apartment the position and the 

menu-depth of other search-criteria could differ (e.g. if house 

was pre-selected the search-criteria 60qm was positioned 

higher in the list then if apartment was pre-selected).  

The dependent variable is the average target selection time 

per block. Each block consists of the selection of all items 

(eight items per block for the shopping list studies and six or 

seven items for the real-estate studies). Thus, four blocks per 

study existed. 

The four sub studies were conducted with student 

participants. 10 participants took part in the real-estate study 

where apartment was selected first, and 12 in the one where 

house was selected first. 17 took part in the shopping list 

study that used the three-layer version first and 12 in the one 

that used the four layer version first. 

 

Model implementation The apps were implemented in Lisp 

and the model was run with ACT-R 7.1. 10 model runs per 

study were implemented1.  In the following the modeling 

principles are summarized. This section focuses on how 

the mechanism for mental model building and updating are 

implemented. Other supplemental mechanisms will be 

briefly introduced in the following section, as well.  

Mental model building in smartphone studies The task 

is to find a target via navigating through different layers of 

the application. In the beginning of the task, a mental 

1 The data of the model did not show much variance. Thus, 

additional model runs were not necessary. 

representation of the application is not inherent to the model. 

Thus, navigation of the application if achieved using 

knowledge of the world chunks. These are made up of 

associations between different words (e.g. the target-word 

alcohol-free beer is related to the word bottle shop). Thus, 

each item of the application is read and a request for 

a knowledge of the world chunk linking the current processed 

item and the target, is made. If such a knowledge of the world 

chunk can be found the item is selected, otherwise the next 

item is processed. The knowledge of the world chunk is used 

to build up a representation chunk in the imaginal buffer. If a 

representation chunk is available, it will be used to navigate 

to the target. This chunk contains the path leading to the 

target, e.g. which item needs to be selected in order to reach 

the target. Thus, the items are the situation and the target is 

the expected outcome. There is no strengthening mechanism 

used in this model. But a specification mechanism that 

clarifies when a representation chunk is adequate to be used, 

e.g. use representation chunk for a menu-depth of three. 

However, this is part of the control chunk held in the goal 

buffer. The control chunk of this model also holds 

information about uncertainty of the current strategy (or path 

chunk) and on detected changes (e.g. updates).  

 
Mental model updates in smartphone studies After the 

second block a change (either a version update or an 

adaptation due to prior selection) is made to the application. 

Thus, the established representation chunks will not lead to 

the expected outcome anymore. So, targets, or subtargets 

cannot be found with these representation chunks. This 

uncertainty is noted in the control chunk. Another attempt to 

find the target using this representation chunk is made. If it 

again does not lead to the target, then a change in the 

environment is noted. Thus, a strategy change is initiated 

and the knowledge-of the world chunks are used to build a 

different representation chunk. For the next target, a new 

representation chunk is built directly.  If the model is 

required to search for a target with a new version a second 

time it can retrieve the correct representation chunk using the 

specification (see Figure 4).  

 

 
Figure 4: Two chunks which are implemented in the 

Smartphone application study 

 

2) Dynamic Decision-Making Study Mental model building 

and updating should be the same process even in very 

different tasks. Thus, it should be modeled in the same way 
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as other tasks that require mental model building and 

updating. Such another task was investigated in the second 

study. It required the participants to make sense of multi-

feature auditory stimuli.  The experiment and the model are 

presented in more detail in Prezenski et al (submitted). In the 

following section, a short overview of material, task, 

participants will be given. Followed by a more description of 

how the mental model building and updating mechanisms 

were implemented. 

 The stimuli were 160 different tones. These were made up of 

a combination of different category features, namely duration 

(short vs. long), direction of frequency modulation (rising vs. 

falling) and intensity (quiet vs. loud) and frequency (high vs. 

low).  Tones which included a combination of specific 

category feature (e.g. loud and falling) were the target stimuli 

(25%), while the other where the non-targets (75%). 

Different category-feature combinations were the target for 

different participants. 

In each trial (there were 240 altogether), a tone was 

presented to the participant and he or she was required to 

press one of two buttons to classify if the tone was a target or 

a non-target. After the button-press auditory feedback was 

presented (“wrong” or “correct”) and then after a pseudo-

random time of six, eight or ten seconds the next trial began. 

After 120 trials, there was a switch of the button allocations, 

the participants were not informed about this. There were 

four different randomizations of the experiment; each had 

different category features as targets. 

The dependent variable was the average percentage of 

correct responses per block. 20 trials were always grouped 

together as a block. Thus, the experiment consisted of 12 

blocks. 

55 student participants took part in the experiment. 

 

Model implementation The experiment for the model was 

implemented in Lisp using the new-other-sound command 

for the tones and using 16 tones (all possible combinations of 

the category-feature) pairs as auditory stimuli. The model 

was written with ACT-R 7.1.  

 

Mental model building The task is to find the correct 

strategy to classify tones into targets and non-targets. The 

fact, that a combination of feature-value pairs is the correct 

solution is unknown to model. Thus, first a single feature-

value-pair strategy is used and this is changed to a two 

feature-value-pair strategy in the course of the experiment. 

Two main chunks are part of the model (see Figure 5). The 

first is a representation chunk which holds the current 

strategy in the imaginal buffer.  The second is a control chunk 

in the goal buffer. In the beginning of a trial a tone is heard 

and a decision has to be made if the tone is a target or not.  

The representation chunk holds the current strategy the in 

the imaginal buffer.  It contains information about the 

relevant feature(s) and value(s) (e.g., the sound is quiet or the 

sound is quiet and its frequency range is high) and the 

proposed response (0 or 1). This can be seen as the situation 

and the predicted action. Furthermore, the specification slot 

of the representation chunk holds information on the degree 

of complexity of the strategy (e.g. one or two-feature 

strategy). An evaluation mechanism is part of the 

representation chunk as well. The evaluation’s result 

determines if a strategy was unsuccessful and keeps record of 

how many times a strategy was successful. It marks if the first 

attempt to use this strategy is successful. Furthermore, the 

number of successful strategy uses are counted until a certain 

value is reached. This is meant to reflect the subjective 

feeling that a strategy was useful often.  If a strategy was 

useful often, then is well-established. The same 

representation chunk is held in the imaginal buffer as long as 

feedback is positive. If feedback is negative a different 

representation chunk will be retrieved from memory. 

The control chunk holds information on the uncertainty 

about a current strategy and on detected environmental 

changes.  

 

 
Figure 5: Two chunks which are implemented in the 

dynamic decision-making study 

  

Mental model updating If an established strategy (in other 

words representation chunk) causes unexpected negative 

feedback uncertainty about this current strategy is noted in 

the control chunk. Nevertheless, this strategy is used a second 

time. If again unexpected outcome occurs, the strategy will 

be changed using the mechanism seen in figure 2. In the 

course of the experiment, this can occur in two different 

situations. The first situation is, when a one-feature strategy 

(e.g. volume loudness is 1) is successful often but after 

repeated unexpected outcome (negative feedback) it is 

changed into a two-feature strategy. Thereby, the first 

feature-value pair (volume loudness is 1) is kept as part of the 

strategy and complemented by another feature-value pair.  

The second situation is, after the environment changed 

when a past establish two-feature strategy repeatedly leads to 

unexpected outcome. Then different two-feature strategies 

are sought for. 

To sum up, both the smartphone and the decision task 

implemented mental model building and updating in the same 

way.  Mental model building and updating is modeled using 

a representation and a control chunk. The followed strategy 

is held in the representation chunk. This chunk is retrieved 

from declarative memory and altered using working 

memory.  Information over environmental conditions and the 

learning history is encoded in the control chunk which is held 

in the goal buffer. In both models, well-established strategies 

are not discarded directly in case of unexpected outcome, but 

representation chunk

specification one or two feature strategy

situation part a) 1.feature-value-pair (e.g. 
duration short)

situation part b) 2.feature-value-pair 
(e.g.volume high)

predicted outcome response (0 or 1)

Unsucessful (nil-yes)
First attempt (nil- yes)
1.count (nil, 1,2… threshold)

2.Count (nil, 1,2…threshold)

control chunk

uncertainty (yes or nil)
environment change (detected nil)
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tested once more. If they lead to failure again, they are partly 

revised and rebuilt. 

However, the type of behavioral data that the models´ 

performance was compared to, differed: average item 

selection time was used for the smartphone studies and 

percentage of correct responses for the dynamic decision-

making experiment. 

Results 

The results section briefly presents the results of the empirical 

data together with the modeled data. The results of the 

smartphone studies are presented in greater detail in 

Prezenski & Russwinkel, 2016. The results of the decision-

making experiment in Prezenski et al (submitted). 

Study 1: Smartphone Interaction 

In all smartphone sub studies, the model captured the trends 

found in the empirical data. The trends show a decrease in 

item selection time from the first to the second block in all 

four studies. An increase from the second to the third block 

found in three studies (both real-estate app studies and the 

shopping-list app, that added an additional layer (shopping 3-

4), see Figure 6). In the other shopping-list app study the 

model also captured the decrease found between the second 

and the third block. Finally, in all four studies there is a 

decrease in the mean item-selection time this was again 

captured by the model.  

 

 
Figure 6: Mean target selection time, reprinted from 

(Prezenski and Russwinkel, 2016, p. 205) 

 

In the other shopping-list app study the model also 

captured the decrease found between the second and the third 

block. Finally, in all four studies there is a decrease in the 

mean item-selection time this was again captured by the 

model. 

To sum up, the model captured learning and relearning 

(update detection and new learning). It matched the 

participant’s behavior in mean item selection time very well 

for all four studies (r² > 0.799).   

Study 2: Dynamic Decision-Making 

In this study, the empirical data show an increase in the 

proportion of the correct response from the first to the sixth 

block (see Figure 7). This is followed by a drop in correct 

responses in the seventh block, which is pursued by a 

performance increase until the twelfth block. The model 

resembles these trends. The overall r² is at 0.672. 

Nevertheless, the descriptive data indicates that the 

participants have almost “recovered” from the change in the 

eighth block, while the model takes longer. 

In summary, the model captured the empirical data well; an 

improvement in performance in the first half of the 

experiment, the performance drop after the strategy changed 

and the recovering in performance in the second half of the 

experiment.   
The overall fit of the dynamic decision-making task is not 

as precise as the fit of the model in the smartphone 

studies.  One explanation hereof is that more measurement 

points in the decision-making study (12) then in the 

smartphone study (4) make it less likely to achieve a good fit.  

 

 
Figure 7: Proportions of correct responses of the model and 

participants 

 

Another explanation could be that the participants need less 

long to find an adequate strategy (adequate update of their 

mental model) after the switch, because they tried the strategy 

of pressing the other button for the same strategy. Such an 

explicit strategy was not modeled to keep the model simple 

and more general. 

Discussion 

Two very different real-life tasks were modeled with ACT-R 

using the same explicit mechanisms for mental model 

building and updating.  
The building process of a mental model involves 

implementing a preliminary version of a mental model and a 

subsequent testing of this model or strategy. If the strategy 

performs as expected, it is strengthened, if not it will be 

updated with a different strategy. Established strategies are 

not changed immediately in case of unexpected outcome but 

tested another time before they are changed. Changes to the 

strategy are gradual; a strategy is not completely discarded; 

some aspects are kept. 
Explicit mechanisms were used, because the changes 

investigated are registered by the humans. Such distinct 

noticed changes lead to changes in behavior. Examples for 
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these kinds of changes in real-life settings are software-

updates or changes in environmental conditions during 

outdoor activity (e.g. sudden rain while climbing). 
The scope of the presented model mechanisms is not 

mental model updating during highly automated processes 

for very skilled users. However, the presented mechanisms 

can reproduce initial learning, usage and relearning of 

strategies. Implicit mechanisms are nevertheless part of the 

models. For example, the previous activation of chunks, as 

well as if a chunk has been retrieved recently, influence the 

course of the model.  
Modeling the change in strategy and the relatively fast 

occurring relearning of the participants using solely implicit 

mechanism with ACT-R is a challenge. 
From a cognitive psychological point of view, explicit 

mechanisms are superior to data driven machine learning 

approaches, such as deep neural networks because they 

provide explanations of the underlying mechanisms of 

participants. Knowledge about explicit strategies of 

participants is valuable for the design and testing of 

interactive systems because such knowledge does not only 

provide summative performance metrics of an interface but 

also gives hints towards the causes of usability shortcomings 

and possible solutions. 
The examples that have been demonstrated assume specific 

mental models and provide mechanisms on how such mental 

models might be updated in human cognition. There is of 

course no guarantee that such strategies and mental models 

closely resemble the real strategies, this is not at last 

grounded on the fact that the human brain does not employ 

explicit symbol manipulation mechanisms, such as the 

explained process of building and updating of mental models 

does. However, the studies that were presented here show that 

such models provide a reasonable approximation of 

participant performance.  
Potential next steps are investigating the proposed mental 

model building and switching strategies empirical, with 

studies targeting these mechanisms.  

Summary 

This paper demonstrates how mental models updating due 

to system changes can be modeled using explicit mechanism. 

This explicit mental model updating mechanism was first 

implemented in a model of smartphone application usage 

(Prezenski & Russwinkel, 2016). The mechanism was then 

applied to a dynamic decision-making task, where 

participants were presented with different multi-feature 

auditory stimuli material (Prezenski, Brechmann, Wolff & 

Russwinkel, submitted).   While the model explained data of 

participants in the smartphone studies very well, the data in 

the dynamic decision-making task was not explained to such 

extend.  
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Abstract 
In the area of sequential choice, the ‘Secretary Problem’ has 

been a prominent paradigm within the study of optimal 

stopping for sequential search tasks. Most recent studies of 

the Secretary Problem present decision makers with the 

relative ranks of options. A recurring finding is that decision 

makers tend to end their search earlier than optimal decision 

strategies (e.g. Helversen, Wilke, Johnson, & Schmid, 2011; 

Seale & Rapoport, 1997, 2000). By revealing only relative 

ranks of options or items, issues of learning and incomplete 

knowledge are avoided; however, this leaves open the 

question of how sensible human decision makers are when 

they know more about the distribution of items. Rather than 

presenting merely ranks to decision makers, we presented 

numerical values drawn from three distinct distributions in 

which relatively high value items were scarce, evenly 

distributed, or abundant. We found that they selected their 

items earlier than they would if they utilized the optimal 

selection rule. More importantly, in contrast to the conclusion 

of Kahan, et al. (1967), we found the selection points of 

decision makers were sensitive to the underlying distribution. 

In contrast, the optimal strategy is totally based on quantile 

ranks regardless of the type of distributions. 

Keywords: Sequential choice, Secretary Problem, Heuristics 

Introduction 

In everyday life, there are many situations in which we need 

to choose from options presented sequentially. The decision 

makers may need to choose the best option out of a 

randomized sequence and may not have the chance to 

choose an option they have previously rejected. One version 

of the problem with the goal to find the largest option in the 

sequence appeared in the mathematical games column by 

Gardner (1960a, 1960b) in Scientific American. This 

problem is also known as the Secretary Problem. 

In the Secretary Problem, there is a reward only if the best 

item (an interchangeable term for ‘option’ in our paper) in 

the sample is chosen. This scenario does not occur too often 

in daily life, as every option usually has its own value. 

However, these scenarios do exist, for example, if you are 

going to strategically sponsor a presidential candidate 

during their elections for the future benefit of your 

company, and you probably have to choose only one out of 

many. At the end, there will only be a single president. In 

another example, when companies compete to become the 

contractor of projects, at the end, in most cases, there is only 

one contractor per project; as an investor or collaborator, 

you want to choose the one and only winner. Basically, this 

scenario holds true for winner-takes-all games. 

Previous studies with no-information problems 

Since the 1960s, many mathematical and behavioral studies 

have investigated various aspects of the Secretary Problem 

and its variants that similarly share the goal of choosing a 

desirable option based on a single attribute of quality. The 

mathematical studies usually aimed at finding out the 

optimal choice strategies in the targeted sequential choice 

problems. Many mathematical analyses assume that the 

options are drawn from a distribution fully known to the 

decision maker, also known as full-information problems. 

The behavioral studies typically compare human behavior to 

an optimal strategy and attempt to explain whether and why 

human decision makers are optimal or not. Some behavioral 

studies are based on partial-information problems, in which 

the decision maker knows some (perhaps distribution family 

and some parameters), but not all, aspects of the distribution 

from which the options are drawn. The relative rank-based 

problems, also called no-information problems, are where 

only the relative ranks of options are presented; the ranks of 

previous options are updated as new options appear. 

In recent years, studies of the Secretary Problem have 

mainly considered no-information problems (e.g. Helversen 

et al., 2011; Lee, 2006; Lee, O’Connor, & Welsh, 2004; 

Rapoport & Tversky,1970; Seale & Rapoport, 1997, 2000). 

No-information problems present only relative ranks of 

items and make the Secretary Problem more tractable 

because complexities such as how decision makers learn the 

underlying distribution and their individual differences in 

learning and understanding are altogether avoided. 

However, in daily life, much of the time decision makers 

judge an option with some degree of knowledge or prior 

belief about the distribution it is coming from. Therefore, 

partial-information problems are closer to most of the 

sequential choice scenarios in daily life. In this study, we 

tried to approach this classic sequential problem by 

presenting values to the decision makers instead of relative 
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ranks. By using real values, it becomes possible to 

manipulate the distribution environment and investigate the 

choice behavior of decision makers in different underlying 

distribution shapes. 

How distribution shapes affect strategies on the 

full-information Secretary Problem  

Some studies have investigated the effect of distribution 

shape in sequential problems. Rapoport and Tversky (1966, 

1970) trained their subjects for a few weeks on distributions 

of item quality and concluded that their subjects performed 

optimally on two-thirds of the tasks. However, Rapoport 

and Tversky only used a uniform distribution for item 

quality. Distribution shapes, for instance positive skew, 

negative skew, or uniform, have been manipulated during 

experimental investigations of the Secretary Problem by 

only a few studies (e.g. Guan & Lee, 2014; Kahan, 

Rapoport, & Jones, 1967). One early study was conducted 

by Kahan et al. (1967); they trained their participants for 

over 3 weeks in the experiments. They concluded that there 

was not sufficient evidence to say their participants used 

different stopping points in environments with the different 

underlying distribution shapes. Guan & Lee (2014) tested 

their participants in a slightly different setting: without the 

benefit of the extensive training that Kahan et al’s 

participants underwent, Guan & Lee’s participants worked 

on randomized sequences of five items drawn from one of 

two distributions derived from the Beta distribution. They 

concluded that their participants could have used multiple-

thresholds with decreasing values towards the end of the 

sequence, and that these thresholds are not affected by the 

value of preceding items. 

Gilbert and Mosteller (1966, Section 3) explain how to 

derive the optimal strategy for the Secretary Problem under 

different distributions, when the goal is to find the highest 

item in the sequence and the distribution shape is fully 

known. The optimal strategy is in the form of a multi-

threshold rule, a sequence of nonincreasing thresholds, 

usually monotonically decreasing. The largest and first 

threshold is for deciding whether to accept the first item; 

provided that the first item was not accepted, the second 

threshold is used to decide whether to accept the second 

item; and so on. The rules of the game require that the last 

item must be accepted if no previous item has been 

accepted. In the case of full knowledge problem of the 

Secretary Problem, the optimal strategy is based on a 

distribution-related percentile-based multithreshold rule 

(See Gilbert & Mosteller, Section 3). The percentile-based 

thresholds vary with the number of items in the sequence, 

however, the strategy is basically the same across 

distributions. What will be different is the exact numerical 

threshold values for different distributions. For a number of 

continuous and discrete distribution families, we derived the 

corresponding multi-threshold optimal decision strategies, 

which numerically vary according to the underlying 

distribution shapes. 

Consider the behavior of the optimal strategy given three 

Beta distributions: a positively-skewed distribution 

(β(1,3.7); skew = 1.00), a negatively-skewed distribution 

(β(3.7,1); skew = -1.00), and the uniform distribution 

(β(1,1); skew = 0). If we consider the underlying 

distribution about the quality of items to be an 

‘environment’, we can characterize a positively-skewed 

distribution as a scarce environment with a lot of low 

quality items and only a few high quality items; and 

correspondingly a negatively-skewed distribution can be 

characterized as an abundant environment with mostly high 

quality items. These distributions are normalized (Z-scored) 

so that irrespective of the underlying distribution, a random 

response strategy has expected payoff of zero, and standard 

deviation of 1. The optimal thresholds are highest for the 

positively-skewed distribution, and then for the uniform 

distribution, while the negatively-skewed distribution has 

the lowest thresholds.. We wanted to see (1) how well the 

optimal models account for the decision makers’ 

performance and (2) to what extent the decision makers are 

sensitive to the different underlying distributions. 

When the optimal strategy for the full-information 

Secretary Problem is used (Gilbert & Mosteller, 1966), 

although the numeric values of the multithreshold rule vary 

according to the underlying distribution, the probability of 

stopping a search follows a fixed set of probabilities, and 

does not vary with the underlying distribution. However, it 

is unknown whether search behavior will be affected by the 

underlying distributions in the Secretary Problem, even 

when decision makers are familiar with the distributions. If 

people are insensitive to the underlying distribution shapes, 

their search lengths (how long they reach the randomized 

sequence before selecting an item) and success rates will 

remain the same in different distributions, as predicted by 

the optimal models. 

We used a between-subjects manipulation of distribution 

shape in an experiment with real-money payoffs, and a 

scarce distribution, a neutral distribution and an abundant 

distribution, to test these predictions with human subjects. 

Method 

We used an Internet card game with real money payoffs to 

implement the Secretary Problem. In a between subjects 

design, each subject was randomly assigned to the 

positively-skewed, negatively-skewed, or uniform 

distribution. There was a training phase of at least 10 rounds 

of the card game, and a test phase with exactly 10 rounds of 

the same card game. The value of each card that was shown 

to the subjects was formed by taking the underlying Z-

scored distribution value, adding 4, and then multiplying it 

by 1200, such that all cards would have positive point 

values, between approximately 2500 and 9500. 

Stimulus 

In each round, subjects were asked to obtain the card with 

the largest number out of a 25-card sequence. Among all 10 

test-phase rounds of the experiment, a successful round 
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required selection of the largest card, and this added a fixed 

bonus to the participation payment. The conversion to real 

money was 2000 points to $1 US; this was disclosed at the 

outset. Subjects were encouraged to achieve as high of a 

score as they could. 

Subjects 

We recruited subjects through the Amazon M-Turk 

platform, and allowed only US subjects with consistently 

good reviews under the Amazon M-Turk monitoring system 

(‘M-Turk Master workers’) to participate. Bonus payments 

proportional to subjects’ performance were rewarded 

through the M-Turk system, on top of a one US dollar 

participation fee. Informed consent was obtained from all 

subjects. 

Training After the instructions and a practice example, 

there was a training phase. A subject had to correctly select 

the largest card for at least 4 rounds in their 10 rounds of 

training; otherwise, the phase would begin all over again 

with the count of their successful rounds reset. No bonus 

payment was offered for the training phase. If the training 

phase was successfully completed, then the subject had to 

complete a test phase consisting of 10 rounds with a real-

money (U.S. dollars) bonus payment of 5 cents for each 

time successfully selecting the largest card in the sequence 

of the 10 test rounds. 

Result 

208 recruited subjects were randomly assigned among the 

conditions: 68 subjects to the positive skew distribution 

condition, 70 to the uniform condition, and 70 to the 

negative skew condition. 155 subjects completed the 

experiment with 54 in the positive skew condition, 52 in the 

uniform condition, and 49 in the negative skew condition. 

Conscientiousness of subjects 

In the full-information Secretary Problem, the optimal 

strategy sometimes (about 3.4% of the time) selects the very 

first card. However, selecting a card that is smaller than any 

previously viewed card guarantees failure. For each 

distribution and phase (Figure 1), we checked the rate of 

these behaviors in our subjects. These behaviors were rare, 

consistent with conscientious behavior of the subjects. 

 

Average success rate 

Among the number of rounds of Secretary Problem 

attempted, the percentage of rounds in which the best item 

in the sequence was selected – success rates (Figure 2, thick 

horizontal lines) of these three distributions are similar. The 

success rate of random responding (4% in all conditions, 

denoted by the dashed grey lines) lies well beyond the 

interquartile range (IQR) for all conditions and beyond the 

whiskers (first quantile – 1.5 x IQR, and third quantile + 1.5 

x IQR) for most of the rounds. When using the Wilcoxon 

one-sample tests to the success rates of training rounds and 

test rounds to the 4% random success rate, p-values are all < 

0.001 for the 3 distributions in the training rounds, and for 

the test rounds; therefore the possibility that subjects were 

responding randomly can be ruled out. Subjects from the 

positively-skewed distribution condition had the highest 

success rates, closely followed by the subjects from the 

uniform distribution, and then from the negatively skewed 

distribution (Figure 2). 

 

 
Figure 2: Percentage of success in selecting the highest card. 

The lower and upper hinges of the boxplots correspond to 

the 25th and 75th percentile of the data. The whiskers 

extend to 1.5 times beyond the bounds of the interquartile 

range. Dotted horizontal dotted lines denote the average 

score of the optimal strategy for each distribution. Dashed 

grey lines denote the success rate of random responding 

(4%, in all conditions). Scores have a slight ordering from 

positive-skew to uniform and then to negative-skew 

distribution. 

  
1a) % choosing 1

st
 card 1b) % choosing non-max 

Figure 1a & b: Left – Percentage of rounds choosing the 

first card. Error bars cover the range one standard error 

above and below the mean. The full-knowledge optimal 

strategies also select the first item out of 25 with a 3.24% 

chance for all the distributions (see the blue line); Right – 

Percentage of rounds not choosing the largest card. Error 

bars cover the range one standard error above and below the 

mean. The graph indicates how often subjects selected cards 

that were not the largest card seen in the sequence so far. 
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Values of chosen cards 

Values of cards our subjects selected at every position under 

each distribution were plotted, and compared to the 

theoretical threshold values that the optimal strategies 

predict: conditional that the card values are higher than the 

threshold for a given position and that no card previously 

shown is higher than the selected card (Figure 3). The 

ordering of card values obtained was highest for the 

positively-skewed distribution, second highest for the 

uniform distribution, and lowest for the negatively-skewed 

distribution, resembling the ordering in the optimal 

strategies. Subjects initially would select cards with lower 

values that showed up in the first few positions during their 

training (Figure 3, top); however, they might have already 

adjusted and increased their thresholds when they reached 

the test rounds. In the test rounds, the accepted values are 

closer to the optimal strategies in the earlier positions, and 

the accepted values, unlike the pattern exhibited by the 

optimal strategies, have a stretched plateau shape, generally 

extending from 1
st
 position until to almost the 23

rd
 or 24

th
 

position out of 25. Data seem to get closer to the patterns of 

chosen card values of the optimal multithreshold rules from 

training rounds to test rounds, nevertheless, their behavior is 

not optimal. Given the similarity between the patterns of the 

values of chosen cards and the conditional expected values 

of chosen cards using optimal strategies with non-increasing 

multithreshold rules, the ordering of underlying thresholds 

utilized by our subjects among the conditions is probably 

consistent with the ordering of the non-increasing 

multithreshold rules. 

 

Efficiency 

The optimal strategies suggest that in the positively-skewed 

distribution, the thresholds used should be the highest, 

followed by the uniform distribution, and then by the 

negatively-skewed distribution. This trend was 

demonstrated in the percentile ranks of cards selected by our 

participants. The optimal strategies suggested that in order 

to select the best item with the optimal thresholds, search 

length would be the same for all three distributions 

regardless of their characteristics and skewness; this trend in 

search length was not exhibited by our subjects (Figure 4). 

One-sample Wilcoxon tests showed that the search lengths 

of all distributions from both training rounds and test rounds 

are shorter than that of the optimal strategies (all p-values < 

0.001). There were also differences in search length as a 

function of distribution shape (Kruskal-Wallis rank sum 

test, p = 0.004); it appears that they searched longer in the 

positively-skewed distribution than in the other two 

distributions. In addition to the above observations, the 

subjects also selected cards with higher values in the test 

rounds than in the training rounds (Wilcoxon Signed-Rank 

Sum Tests, W=268, p <0.001, d= - 0.58 for the negatively 

skewed distribution; W=418, p = 0.017, d= - 0.25 for the 

uniform distribution; and W=373, p <0.001, d= - 0.44 for 

positively skewed distribution), despite having similar 

search length in training and test rounds. It seems that our 

subjects have learnt about the distributions and had their 

performance improved towards the performance of the 

optimal strategies. 

 

Search length 

Besides looking at the means of search length, we also 

looked at the cumulative distribution of how frequently a 

selection had already been made by a particular position in 

the sequence (Figure 5). Optimal strategies for the full-

information Secretary Problem lead to the same pattern of 

search length (Figure 5, solid black line without marker) 

irrespective of the underlying distribution (Gilbert & 

Mosteller, 1966). For our subjects, when combined as a 

group, search length was closer to the optimal strategies in 

the positive skew condition, and not as close in the 

negatively skewed distribution or in the uniform 

distribution. The search lengths of the subjects follow a 

pattern of concave downward until the 24
th

 item in the 

 

 

 
Figure 3: Values and percentiles of chosen cards at positions 

where they are chosen. We grouped the results by their 

decision points in the sequence and found out the mean 

values for each position on condition that the subjects 

stopped there. The dashed lines are the values of card at a 

certain position when the decision maker makes use of the 

optimal (full-knowledge) strategy from the very beginning 

of the sequential choice problem, on condition that the stop 

happens to be at that position 
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sequence; shapes of the cumulative distribution curves 

suggest a tendency for the subjects to select an item sooner  

than the optimal strategies: the curves of all conditions are 

concave downward whereas the curve of the optimal 

strategy is slightly concave upward – in other words, they 

all have the tendency to stop too soon in both training 

rounds and test rounds. Although the outcome of optimal 

strategies does not predict that, there are some obvious 

differences between the curves of the positively skewed 

distribution and that from the other two distributions in both 

training rounds and test rounds. For the comparison of these 

curves, we conducted the Kolmogorov-Smirnov tests to 

examine their differences: in particular, the difference of 

search lengths among the three underlying distributions; 

however, none of the Kolmogorov-Smirnov tests was 

significant, including the comparison between the curves 

from subjects’ data to the curves from the optimal strategies. 

We suspect the Kolmogorov-Smirnov test for distributions 

may not be for right test for our purpose. The sudden 

increases from item 24 to item 25 reflect the rule of the task 

that participants have to accept the last item as long as it is 

reached. For the cumulative selection probability, learning 

was reflected only a bit more obviously in the positive skew 

distribution as a shift closer to the optimal strategies from 

training to test (Figure 5, top to bottom). 

 

Discussion 

There have been experiments on the Secretary Problem 

(Gardner, 1960a), in which a payoff is obtained only if the 

largest item is selected (e.g. Bearden, Rapoport, & Murphy, 

2006; Lee et al., 2004; Seale & Rapoport, 1997, 2000), as 

well as related tasks in which the goals are to obtain an item 

in the top 10% or 25% (Todd & Miller, 1999). Although 

many real-life situations involve real value options, 

Secretary Problems with real values have received little 

attention in psychological experiments. We conducted a 

study of the Secretary Problem with information, to look at 

how human sequential choice behavior may vary as a 

function of distribution shape. Our subjects were sensitive 

to the underlying distribution shape (as shown in Figure 4 

and Figure 5). 

The age-old claim continues: our subjects stopped their 

searches early, i.e. earlier than the optimal strategies do 

(Figure 4 and Figure 5), and it was also not likely for them 

to keep searching until the last few items of the sequence. 

There are a few plausible explanations. The tendency to stop 

earlier than predicted could be obtained by an enhanced 

 
Figure 4: Values of chosen cards vs search length. Means of 

individual scores are plotted as a function of means of 

individual search length (number of items searched up until 

an item is accepted). The aggregate means for all subjects in 

each distribution are plotted with different markers (unfilled 

for training, filled for test). The optimal strategy is plotted 

with markers with internal plus signs. The upward switch of 

locations of these markers from when subjects were during 

training rounds to when they were in the test rounds shows 

how performance improved from training to test for each 

distribution, despite similar search length.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The patterns of search length are similar between 

training rounds and test rounds, having similar concave 

downward patterns. All patterns showed they stopped earlier 

than the optimal strategy does. Subjects in the positively 

skewed distribution seemed to stop early with a lesser 

tendency. The jumps towards the last position were due to 

the rule of the Secretary Problem that the last item when 

reached must be selected.  
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model that incorporates a small intrinsic sampling cost 

(Seale & Rapoport,1997). Another possibility is that in 

addition to search cost, subjects were affected by a goal that 

is more natural for them, for example a goal that involves 

satisficing (Todd & Miller, 1999), that is, an implicit goal to 

be happy about obtaining a high value item, instead of 

waiting out for the highest item to show up. 

After training, the performance of our subjects got closer 

to the optimal strategy, for all of the distributions tested 

(Figures 3 and 4). Moreover, our subjects searched for cards 

slightly longer in positively-skewed environment than in the 

other two environments. This behavior contrasts with the 

optimal strategies, which have exactly the same search 

length pattern, irrespective of the underlying distribution of 

item quality. It is not totally clear why decision makers 

exhibit these behavior patterns. It is possible that our 

subjects exhibited these behaviors because of imperfect 

knowledge of the underlying distributions, and there was 

noise in sampling when they sampled to set and adjust their 

thresholds. A further direction to explore is plausible simple 

strategies that decision makers may employ (Gigerenzer, 

Hertwig, & Pachur, 2011) to select cards in a manner with 

monotonic decreasing thresholds. Such a strategy in theory 

could potentially come quite close to the optimal strategies 

in terms of success rate and efficiency. 
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Abstract 

Decisions from Experience (DFE) research involves a paradigm 

(called, sampling paradigm), where decision-makers search for 

information before making a final consequential choice. Although 

DFE research involving the sampling paradigm has focused on 

accounting for information search and final choices using 

computational cognitive models. However, little attention has been 

paid to how computational models could account for final choices 

of participants with different information-search strategies. In this 

paper, we perform an individual-differences analysis and test the 

ability of computational models to explain final choices of 

participants with different search strategies. More specifically, we 

take an Instance-Based Learning (IBL) model, which relies on 

recency processes, and we calibrate this model to final choices of 

participants exhibiting more-switching (piecewise strategy) or less-

switching (comprehensive strategy) between options in different 

problems. Our results indicate more reliance on recency of 

information among participants exhibiting piecewise strategy 

compared to comprehensive strategy. Overall, the IBL model 

calibrated to individual participants using a single set of 

parameters could account for both piecewise and comprehensive 

strategies. We highlight the implications of our results for DFE 

research involving information search before consequential 

decisions. 

Keywords: information search; experience; search strategy; 
computational cognitive models; Instance-Based Learning 
Theory; multi-arm bandit problems. 

Introduction 

In words of famous philosopher Plato, a good decision is 

based on knowledge and not numbers (Stutman & Kevin, 

2015). Knowledge can be obtained by searching the 

environment for information before making consequential 

decisions. For example, investment decisions are likely to 

be affected by an investor’s previous knowledge of a 

company’s stocks (Subramanyam, 2016). An investor could 

invest in a wide range of companies in the stock market. To 

ensure a good decision, one must gather information about 

various returns offered by different stocks before making a 

consequential choice for a company’s stocks. While 

gathering information, some people may explore the prices 

of a company’s stock repeatedly before switching to a 

different company’s stock (comprehensive strategy). 

However, some people may explore prices of a company’s 

stock once and then switch to exploring the stock prices of a 

different company (piecewise strategy). In both cases, it is 

important to investigate how influential computational 

cognitive models account for consequential choices among 

both kinds of search strategies. This investigation is the 

main goal of this paper. 

 

  The act of making choices based on information search is a 

common exercise involving people in different facets of 

their daily life (choosing smartphones, choosing TV 

channels etc.). In fact, information search before a choice 

constitutes an integral part of Decisions from Experience 

(DFE) research, where the focus is on explaining human 

maximizing decisions based upon one’s experience with 

sampled information (Hertwig & Erev, 2009). To study 

people’s search and choice behaviors in the laboratory, DFE 

research has proposed a “sampling paradigm” (Hertwig & 

Erev, 2009).  

In the sampling paradigm, people are presented with two 

or more options to choose between. These options are 

represented as blank buttons on a computer screen. People 

are first asked to sample as many outcomes as they wish and 

in any order they desire from different button options 

(information search). This sampling of information among 

different options is costless. Once people are satisfied with 

their sampling of options, they decide from which option to 

make a single final (consequential) choice for real.  

Hills and Hertwig (2010) have analyzed the search 

strategies of people asked to make choices in the sampling 

paradigm. Hills and Hertwig (2010) report two search 

strategies prevalent among participants: comprehensive and 

piecewise. In the comprehensive strategy, people search one 

option repeatedly before switching to the other option. In 

contrast, in the piecewise strategy, people search for one 

option once and then switch to the other option. They 

sample the other option once and again switch back to the 

first option, searching for information in a zigzag manner.   

 Computational cognitive models of human choice 

behavior have thus far predicted choices at an aggregate 

level in the sampling paradigm, i.e., when people’s final 

choices are averaged over several participants (Busemeyer 

& Wang, 2000; Gonzalez & Dutt, 2012; Lejarraga, Dutt, & 

Gonzalez, 2012). For example, the Instance-Based Learning 

(IBL) model is a popular DFE algorithm for explaining 

aggregate choices (Erev et al., 2010; Gonzalez & Dutt, 

2011; Lejarraga, Dutt, & Gonzalez, 2012; Hertwig, 2012). 

The IBL model (Gonzalez & Dutt, 2011) consists of 

experiences (called instances) stored in memory. Each 

instance’s activation is used to calculate the blended values 

for each option, thereby helping the model make a final 

choice. The IBL model relies on ACT-R framework for its 

functioning (Anderson & Lebiere, 1998). 

 Prior DFE research has shown that, at the aggregate 

level, the IBL model exhibits superior performance 

compared to other computational models in the sampling 

paradigm (Erev et al., 2010; Gonzalez & Dutt, 2011). 
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Although computational cognitive models have been 

evaluated at the aggregate level; yet, less attention has been 

paid to the evaluation of models in their ability to account 

for individual differences, especially in terms of search 

strategies. Given that people exhibit two specific search 

strategies (Hills and Hertwig, 2010), comprehensive and 

piecewise, it would be interesting to see how computational 

cognitive models with a set of parameters account for 

consequential choices for participants exhibiting these 

strategies.  

In this paper, our main goal is to evaluate how 

computational cognitive models, which explain choice 

behavior at the aggregate level (e.g., IBL model), perform in 

capturing consequential decisions of participants exhibiting 

different search strategies with single set of parameters. For 

this purpose, we use risky problems involving two options 

and outcomes with different probabilities (rare events and 

common events). We calibrate an IBL model, which was 

evaluated in prior research at the aggregate level, to 

preferences of participants showing different search 

strategies. In what follows, we detail the problems used and 

the working of the IBL model. Then, we discuss the 

methodology of calibrating the IBL model to consequential 

decisions in different problems. Next, we present the results 

of model evaluation and the role of recency and frequency 

mechanisms in accounting for consequential decisions 

involving different search strategies. We close the paper by 

discussing the implications of our results for DFE research 

in the sampling paradigm. 

Problem Dataset 

Eighty students at Indian Institute of Technology Mandi, 

India, participated in a study where the objective was to 

evaluate participant preferences for options after 

information search. The study involved the sampling 

paradigm, where participants searched for information and 

then decided an option they preferred across two between-

subjects problem conditions: Rare-Event (RE; N = 40) and 

Common-Event (CE; N = 40). In the CE problem, a variable 

option had a high probability (0.8) value associated with a 

high (H) outcome (1.18 return on the allocated amount); 

whereas, in the RE problem, the variable option had a low 

probability (0.1) associated with the H outcome (3.28 return 

on the allocated amount). Across both problems (CE and 

RE), the low (L) outcome (0.88) in the variable option 

always occurred with a complementary chance. An 

alternative with a fixed return on investment (1.1 return on 

the invested amount with certainty) was present in both RE 

and CE conditions as second option. Thus, in each problem, 

participants were presented with two options: an option with 

a fixed return on allocation (non-maximizing option); and, 

an option with a variable return on allocation (maximizing 

option). The maximization was defined based upon the 

expected value of options in problems. The nature of 

outcomes and probabilities in different CE and RE problems 

were like those described in Hertwig et al. (2004).  

In each problem, participants were first asked to sample 

options (presented as blank buttons; sampling phase). 

During the sampling phase, every time an option was 

chosen in a problem, participants could see an outcome 

based upon the associated probability in the option. 

Sampling of options was costless in the sampling phase and 

participants were free to sample options in any order and as 

many times as they desired. At any time during the 

sampling phase, participants could click the “Make a Final 

Decision” button. Clicking this button terminated the 

sampling phase and moved participants to the final-decision 

phase. In the final-decision phase, participants were asked to 

make a final choice for one of the options for real.  

 

To understand the effect of different sampling strategies, 

we calculated the switch ratio, which was defined as the 

total number of switches made by a participant between 

options divided by the total number of switches possible (= 

number of samples – 1). Like done by Hills and Hertwig 

(2010), we calculated the median value of switch ratio by 

pooling participants across both CE and RE problems. 

Participants possessing switch-ratios less than median were 

classified as following comprehensive search strategy 

(called LM) and participants possessing switch-ratios 

greater than or equal to median were classified as following 

piecewise strategy (called GM). By pooling the CE and RE 

problems, there were N = 40 participants in the LM group 

and N = 40 participants in the GM group. 

 

Human Results 
 

Figure 1 shows proportion of final choices by human 

participants in the GM and LM condition. As seen in the 

Figure, the pattern of preferences across problems in the LM 

and GM conditions was similar in human data: higher 

allocation to the fixed option compared to the variable 

option. Next, we consider whether an IBL model can 

account for these effects via its cognitive mechanisms 

(model results will be described in a future section). 

 

 
Figure 1: Percentage Proportion of final choices in each 

option by human and model for both GM and LM condition. 

 

The Model 
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   In this section, we detail the working of a model based 

upon Instance-Based Learning Theory (IBL model; 

Gonzalez & Dutt, 2011; 2012), which was calibrated to LM 

and GM search strategy groups separately.  

Instance-Based Learning (IBL) Model 

 The IBL model (Dutt & Gonzalez, 2012; Gonzalez & Dutt, 

2011; 2012; Lejarraga, Dutt, & Gonzalez, 2012) is based 

upon the ACT-R cognitive framework (Anderson & 

Lebiere, 1998). In this model, every occurrence of an 

outcome of an option is stored in the form of an instance in 

memory. An instance is made up of the following structure: 

SDU, here S is the current situation (two blank option 

buttons on a computer screen), D is the decision made in the 

current situation (choice for one of the option buttons), and 

U is the goodness (utility) of the decision made (the 

outcome obtained upon making a choice for an option). 

When a decision choice needs to be made, instances 

belonging to each option are retrieved from memory and 

blended together. Blended value of an option is a function 

of activation of instances corresponding to outcomes 

observed on the option. Activation of an instance is a 

function of the frequency and recency of observed outcomes 

that occur on choosing options during sampling. The 

blended value of option j at any trial t is defined as (Lebiere, 

1999):     
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where xi, j, t is the value of the U (outcome) part of an 

instance i on option j at trial t. The pi, j, t is the probability of 

retrieval of instance i on option j from memory at trial t. 

Because xi, j, t is value of the U part of an instance i on option 

j at trial t, the number of terms in the summation changes 

when new outcomes are observed within an option j (and 

new instances corresponding to observed outcomes are 

created in memory). Thus, n = 1 if j is an option with one 

possible outcome. If j is an option with two possible 

outcomes, then n = 1 when one of the outcomes has been 

observed on an option (i.e., one instance is created in 

memory) and n = 2 when both outcomes have been 

observed (i.e., two instances are created in memory).  

  At any trial t, the probability of retrieval of an instance i on 

option j at trial t is a function of the activation of that 

instance relative to the activation of all instances (1, 2, … n) 

created within the option j, given by  
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Where τ, is random noise defined as σ . 2  and σ is a free 

noise parameter. Noise captures the imprecision of recalling 

past experiences from memory. The activation of an 

instance i corresponding to an observed outcome on an 

option j in each trial t is a function of the frequency of the 

outcome’s past occurrences and the recency of the 

outcome’s past occurrences (as done in ACT-R). At each 

trial t, activation ,  , i j tA of an instance i on option j is                                         
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where d is a free decay parameter;  ,  , i j t  is a random draw 

from a uniform distribution bounded between 0 and 1 for 

instance i on option j in trial t; and tp is each of the previous 

trials in which the outcome corresponding to instance i was 

observed in the binary-choice task. The IBL model has two 

free parameters that need to be calibrated: d and σ. The d 

parameter controls the reliance on recent or distant sampled 

information. Thus, when d is large (> 1.0), then the model 

gives more weight to recently observed outcomes in 

computing instance activations compared to when d is small 

(< 1.0). The σ parameter helps to account for the sample-to-

sample variability in an instance’s activation. In the IBL 

model, we feed the sampling of individual human 

participants to generate instance activations and blended 

values. Every time a choice is made and outcome is 

observed, the instance associated with it is activated and 

thereafter blended values are computed for options faced by 

an individual participant.  

  In one version of the IBL model, we use parameters 

suggested by Lejarraga, Dutt, and Gonzalez (2012) to test 

the model’s ability in capturing final choices for different 

search strategy groups, LM and GM. In a second version of 

the model, we found values for the d and σ parameters by 

calibrating these parameters to final choices from human 

participants separately in the two strategy groups. For this 

calibration, we determine the model’s likelihood for making 

the same choice as made by each human participant given a 

set of model parameters.  

 

For each model participant, the model applied the following 

softmax function across both options in a problem (Bishop, 

2006; Sutton & Barto, 1998): 
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Where, SMeanX

 

 and  SMeanY

 

 are the blended values 

calculated for the two options and Prob (Option X) is the 

probability of choosing Option X

 

given a set of model 

parameters (also, called the “likelihood”). If Option X was 

chosen by a human participant in a problem, then the Prob 

(Option X) is used to calculate the likelihood value of 

making the same choice from the IBL model given its set of 

parameters. The log-likelihood L is defined as: 
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                (5) 

 

Where, i refers to the ith model participant playing a 

problem and N is the total number of human participants in 

the LM and GM groups (the model was calibrated 

separately to each of the two switching groups). The log in 
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equation 5 is the natural logarithm and we calibrated the 

IBL model by minimizing the negative of the log-likelihood 

value (- L).  

  Furthermore, to derive a choice from the IBL model, we 

use the following rule: If the human chose Option X and the 

value of Prob (Option X) is greater than or equal to 0.5, then 

the model makes a choice like the human choice; else, the 

model chooses the option that is opposite of what human 

participant chose. We calculated the error proportion by 

comparing the model participant’s choice to the human 

participant’s choice. 

Method 

Dependent Variables 
In this paper, we account for the final choices of participants 

with different search strategies. For this purpose, a choice 

made by a model participant is evaluated against a choice 

made by a corresponding human participant in either of the 

LM and GM groups, separately.   

  A choice in a problem is classified as maximizing if the 

chosen option’s expected value is greater than the expected 

value of the non-chosen option. Those cases for which this 

criterion failed were termed as having non-maximizing 

choice. The expected value of an option was calculated by 

multiplying the probability of occurrence of outcomes with 

the outcomes and summing the multiplications together. For 

a model, the error proportion was calculated in a problem 

as:    

H M H M H M H M H M H M  M N + N M M N + N M + N N + M M( ) ( )ErrorProportion 

                                                                    . . . (6)  

    Where, MHNM was the number of cases where the human 

participant made a maximizing choice but the model 

predicted a non-maximizing choice. NHMM was the number 

of cases where the human participant made a non-

maximizing choice but the model predicted a maximizing 

choice. Similarly, the MHMM and NHNM were the number of 

cases, where the human participant made the same choice 

(maximizing or non-maximizing) as predicted by the model. 

Smaller the value of the error proportion, the more accurate 

the model is in accounting for maximizing individual 

choices of human participants.  

 

Model Calibration 
     The IBL model described here had two free parameters d 

and σ. The model was calibrated on final choices for both 

groups, GM and LM, using a genetic algorithm program. A 

single set of parameters were used to calibrate the model by 

minimizing the negative of the Log-Likelihood value. The 

genetic algorithm has features that help prevent the 

algorithm getting trapped in local minima. The genetic 

algorithm repeatedly modifies a population of individual 

parameter tuples to find the tuple that minimizes -L. In each 

generation, the genetic algorithm selects individual 

parameter tuples randomly from a population to become 

parents and uses these parents to select children for the next 

generation. Over successive generations, the population 

evolves toward an optimal solution. The population size 

used here was a set of 20 randomly-selected parameter 

tuples in a generation (each parameter tuple was a value of d 

and σ parameters). The mutation and crossover fractions 

were set at 0.1 and 0.8, respectively, for an optimization 

over 150 generations. The model was calibrated separately 

in the LM and GM groups. Within each group, for each 

parameter tuple, the model was run 10-times across 

participants in a problem and the average –L value across 

10-runs was minimized. The 10-runs ensured that the run-

to-run variability in the –L value was small and the 10 value 

was derived after trying different integer values between 1 

and 20 runs.  

Model Results 

First, we evaluated the IBL model’s ability to account for 

final choices in the GM group. The best calibrated values of 

d and  parameters in the IBL model were found to be 15.05 

and 0.29, respectively (see Table 1). The large d value 

exhibited extreme reliance on recency during sampling. 

Also, the smaller  value exhibited lower sample-to-sample 

variability in instance activations. The lowest value of log-

likelihood obtained during calibration was -25.19.  

 

Table 1: Parameters and Likelihood Values 

Condition Parameters Log-Likelihood 

GM d -25.19 

   

LM d=8.82 -29.03 

   

GM-LDG d=5.0 -127.07 

 =1.5  

LM-LDG d=5.0 -106.33 

 1.5  

 

The parameters obtained from the IBL model for the LM 

group were d = 8.82 and  = 0.73. The value of d in the LM 

group again made participants rely on recency of 

information during sampling; however, this reliance on 

recency processes was less than that for the GM group. 

Furthermore, the noise parameters value represented lesser 

variability in activations across samples. Overall, the 

calibrated likelihood value was -29.03, which was slightly 

lesser than that in the GM group. Furthermore, the 

calibration of IBL model to both LM and GM groups 

resulted in improved likelihoods compared to the 

parameters suggested by Lejarraga, Dutt, and Gonzalez 

(2012) (d = 5;  =1.5). The model parameters fitted using 

log-likelihoods by us in this paper are for individual 

participant choices in the two groups, LM and GM. 

However, the model parameters fitted by Lejarraga, Dutt, 

and Gonzalez (2012) were for choices aggregated across 

several participants. Given the high values of d parameter in 
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our results, it seems that the recency and frequency 

processes are stronger among individual participants 

compared to the average across several participants.   

 

Figure 1 shows proportion of final choices by model 

participants compared to human data in the GM and LM 

conditions. In both conditions, the IBL model performed 

like human participants: The model showed greater 

preferences for the fixed option compared to the variable 

option in both GM and LM conditions. The model’s 

preference for fixed (variable) option was slightly higher 

(lower) compared to those for human participants. Due to 

recency effect, the model’s account for human preferences 

was better for those who switched more and followed the 

piecewise search strategy compared to participants who 

switched less and followed the comprehensive strategy. 

Thus, perhaps, recency processes were more prevalent 

among the piecewise strategy group compared to the 

comprehensive strategy group.  

  Lastly, we analyzed the IBL model’s performance in 

accounting for individual decisions. According to error 

proportion criterion, more number of NHNM and MHMM 

combinations help minimize the error proportion (which is 

desirable), while higher number of MHNM and NHMM 

combinations increase the error proportion. Table 2 shows 

the individual-level results from different LM and GM 

groups. As seen in Table 1, the calibrated IBL model for 

GM group produced 55% of NHNM combinations and 30% 

of MHMM combinations, respectively. In contrast, the 

erroneous NHMM and MHNM combinations were 12 % and 

3%, respectively, from the model. Due to comparatively 

higher values for the NHNM and MHMM combinations in the 

GM group compared to the LM group, the IBL model 

possessed smaller error proportion in the GM group 

compared to the LM group. Overall, the IBL model showed 

superior performance for GM group compared to the LM 

group (15% error proportion < 32% error proportion). 

Finally, the error proportions from models fitted in this 

paper at the individual participant level were comparatively 

less compared to the error proportions from models fitted to 

the aggregate data by Lejarraga, Dutt, and Gonzalez (2012) 

(LDG model in GM and LM groups). Thus, it seems that 

fitting models using individual choices makes such models 

perform better compared to when the same models are fitted 

using aggregate choices. 

 

Table 2: The error proportions from IBL model in the LM 

and GM groups 
Human and 

Model data 

combination 

H/M 

GM LM GM 

(LDG) 

 

LM 

(LDG) 

No. of 

Observations 

40 40 40 40 

NHNM 55 45 22 33 

MHMM 30 23 13 20 

NHMM 12 15 45 27 

MHNM 03 18 20 20 

Error Proportion 0.15 0.32 0.65 0.47 

 

Discussion & Conclusions 

So far, models in decisions from experience (DFE) 

paradigms had been evaluated to aggregate human choices 

(Gonzalez & Dutt, 2011; 2012). In such comparisons, the 

average risk-taking from the model was compared to the 

average risk-taking from human data. However, in this 

paper, we compared a model’s performance by calibrating 

the model to individual human choices. More specifically, 

we calibrated an Instance-Based Learning (IBL) model to 

individual preferences with different information-search 

strategies. Overall, the IBL model showed superior 

performance when calibrated to both search-strategy groups, 

piecewise and comprehensive. The high value of decay 

parameter showed stronger reliance on recency processes 

among individual participants. In fact, the recency effect 

was stronger among participants who switched more and 

followed the piecewise search strategy compared to 

participants who switched less and followed the 

comprehensive strategy.  

  One likely reason for differing recency effect among 

different search strategy is that when participants use the 

piecewise strategy, they tend to compare the most recent 

outcome on one option with the most recent outcome on the 

other option. For this comparison to work, participant needs 

to rely on recent information. Furthermore, this comparison 

is less prevalent in the comprehensive strategy, where 

participants tend to search one option repeatedly before 

moving to investigate the other option.  

  In fact, the observation about high d parameter value for 

the piecewise strategy also helps us explain why the error 

proportion from the model was much less for the piecewise 

strategy compared to the comprehensive strategy. That is 

because recency is more suited to piecewise strategy 

compared to comprehensive strategy. 

  In this paper, we took one model of experiential choice; 

however, as part of future research, we plan to extend this 

investigation to a larger set of models and application areas. 

Also, it would be interesting to investigate how recency 

effects explain choices among different search strategies in 

environments where the outcomes and probabilities are non-

stationary and change overtime. Some of these ideas and 

others form the immediate next steps for us to pursue in the 

near future. 
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Abstract

The conjunction and disjunction fallacies are ex-
pressions of irrational judgments. We propose a
quantum cognition model that represents each con-
cept as a separate qubit and the measurement pro-
cess as a weak measurement. Using an on-line
questionnaire, we analyzed the relation between ir-
rational judgment and the corresponding quantum
state entanglement. The model enables us to fol-
low an individuals’ quantum cognitive representa-
tion throughout the questionnaire and shows that,
on average, participants get more entangled as they
progress in the questionnaire. Our model accounts
for multiple concepts simultaneously for rational
and irrational decisions and suggests that quantum
entanglement of mental concepts is correlated with
irrational judgments.
Keywords: Quantum cognition; Irrationality;
Quantum entanglement; Probability judgment falla-
cies.

Introduction
People tend to make irrational decisions (Tver-
sky and Kahneman, 1983). Irrational behavior is
any behavior that reflects a violation of basic laws
that stem from classical probability theory (Kol-
mogorov, 2013). In this paper, we focus on the
conjunction and disjunction fallacies, which violate
the law of total probability: The conjunction fallacy
occurs when a person judges the probability of the
conjunction of two events to be more likely than ei-
ther of the constituent events. The disjunction fal-
lacy occurs when a person judges the probability of
the disjunction of two events to be less likely than
either of the constituent events. Quantum cogni-
tion is a developing field (Busemeyer and Bruza,
2012) that takes methods and concepts from quan-
tum probability theory and uses them to explain and
model decision-making findings. The hypothesis
behind quantum cognition models is that irrational

behavior obeys the laws of quantum theory rather
than classical probability theory.

Studies of irrational behavior using classical
methods have shown that people violate the unicity
principle. This assumption is broken as soon as we
allow incompatible questions into the theory, which
causes measurements to be non-commutative. In-
compatible questions cannot be evaluated on the
same basis, so they require setting up separate sam-
ple spaces. This leads to conjunction and disjunc-
tion fallacies (Tversky and Kahneman, 1983; Tver-
sky and Shafir, 1992). Quantum probability does
not assume the principle of unicity, thus allowing
one to use a partial Boolean algebra; each set of
questions can be answered using one sample space
in a Boolean fashion. All Boolean sub-algebras are
pasted together in a coherent but non-Boolean fash-
ion.

Previous work has shown that quantum probabil-
ity (QP) can be used to model cognitive fallacies,
specifically, conjunction and disjunction (Trueblood
and Busemeyer, 2011; Pothos and Busemeyer,
2009; Franco, 2016). Two concepts analyzed in the
fallacies lie in the same Hilbert space and represent
two different reference frames. This is a framework
that can account for the irrationalities but not for the
rational behavior.

Quantum entanglement is a unique quantum phe-
nomenon wherein two systems cannot be described
as two separable systems. The only way to describe
their joint quantum state is by describing it as a
whole (Stolze and Suter, 2004; Salimi et al., 2012).
Quantum entanglement has been used in the quan-
tum interaction community to describe joint con-
cepts (Grdenfors, 2004; Nelson and McEvoy, 2007;
Bruza et al., 2009), albeit only when considering the
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population and not individual participants.
The theoretical framework of quantum weak

measurements describes a quantum system by a
generalized quantum state that propagates from the
future as well as from the past (Aharonov and Vaid-
man, 1991). By ”pre-selecting” an initial quan-
tum state and “post-selecting” a final quantum state,
one can describe the full dynamics of a quantum
system, sometimes enabling a description of pecu-
liar phenomena, such as the Aharonov–Bohm effect
(Aharonov and Bohm, 1959). This type of measure-
ment is called “weak measurement” and will be ex-
ploited in our proposed quantum cognitive model.

We propose a quantum model based on entangle-
ment and weak measurements that can account for
rational and irrational behaviors as well as the dy-
namics of the mental state of the participants. Pre-
vious studies have not addressed the dynamics of
irrationality, nor have they examined entanglement–
irrationality relations. In this study, an on-line ques-
tionnaire (see Methods) containing several instan-
tiations of conjunction and disjunction fallacy sce-
narios was administered. Using our model, we first
show that it describes all participant results, i.e.,
both rational and irrational, for all the questions. We
then show that our model enables an analysis of the
multi-qubit quantum mental operations of each par-
ticipant regarding each question, namely, a quanti-
tative measure of bipartite quantum entanglement.

Our analysis of the survey data reveals that ir-
rational judgment is represented by an entangled
quantum state, whereas a separable quantum state
represents a rational judgment in both the conjunc-
tion and disjunction fallacies. Finally, our model en-
ables the analysis of dynamics throughout the ques-
tionnaire for each participant. We show that as more
information is revealed about the concepts, the more
entangled these concepts become. This formulation
enables a more generic, scalable and intuitive repre-
sentation of cognitive concepts.

Methods
Conjunction and disjunction fallacies. In our
formalism, for two concepts A and B: (i)
The conjunction fallacy occurs when p(A∩B) >
min(p(A), p(B)), i.e., when the probability of the

conjunction is greater than either of the constituent
probabilities. (ii) The disjunction fallacy occurs
when p(A∪B) < max(p(A), p(B)), i.e., when the
probability of the disjunction is smaller than either
of the constituent probabilities. We defined the irra-
tionality measure as follows:

irr = p(A∩B)−min(p(A), p(B)) conj. (1)
irr = max(p(A), p(B))− p(A∪B) disj. (2)

In the analysis, we defined an answer as irrational
only if irr > 0.1, i.e., this is a stricter condition for
irrationality.

Questionnaire. To study the conjunction and
disjunction fallacies, we used the following person-
ality sketches of two fictitious individuals, Emma
and Liz, followed by a set of occupations and av-
ocations associated with each or both of them. In
each question, the participants were asked to give
a probability for each option by using a horizon-
tal slider/bar. All the options were initialized to the
neutral probability value of 0.5.

We briefly outline the questionnaire as follows:

Q1: Emma is outgoing and lives in an apartment
within the center of the city with her two cats. She takes
yoga classes at the gym three times a week, enjoys reading
science-fiction books and volunteers in an animal shelter
at least once a week. For each statement, please move the
horizontal slider to represent how much do you think the
statement represents Emma.

Emma is a manger. (= p(A))
Emma is a pianist and a runner.
Emma is a writer.
Emma likes to paint.
Emma is vegan.
Emma likes to exercise. (= p(B))
Emma is a manger and likes to exercise. (= p(A∩B))
Emma is a blogger.

Q2: Liz lives in Oakland in a Victorian house. She is
an analytical thinker and works in a start-up. In addition,
she tries to go to a few classes at the gym every week.
She is very ambitious in her job. She enjoys cooking very
much and she is very good at it. She also likes camping.
For each statement, please move the horizontal slider to
represent your opinion about Liz.

Is Liz a programmer? (= p(C))
Does Liz like to paint? (= p(D))
Is Liz a programmer and likes to paint? (= p(C∩D))

Q3: Emma and Liz want to do an extracurricular ac-
tivity together.For each statement, please move the hori-
zontal slider to represent how likely it is they will choose
this activity and why.

141



Take spinning class, because Emma likes to exercise.
(= p(B))
Try out gourmet restaurants in the city.
Take realistic painting classes, because Liz like to
paint. (= p(D))
Take singing classes near Emma’s apartment.
Take photography class near Liz house.
Take spinning class or realistic painting classes. (=
p(B∪D))

Q4: Recently Emma got to the conclusion that she
doesn’t have enough time in a day. For each statement,
please move the horizontal slider to represent how likely
it is that this is the reason Emma needs more time.

For her work, as manager. (= p(A))
Volunteer.
Exercise. (= p(B))
Join Book club, because she likes to read.
To work as manager or to exercise. (= p(A∪B))
Meet with friends.

Participants were 100 Amazon Mechanical Turk
users. We asked for Amazon Mechanical Turk Mas-
ters that were native English speakers from North
America that had completed at least 100 tasks with
an approval rate > 95%. Each participant was pre-
sented with the questionnaire on Qualtrics. After
completing the questionnaire, the participants had
to pass three screening checks:

a) ”Trap” question - we inserted a question that
contained internal text telling the participant how
to answer. Participants that answered incorrectly
were excluded (15 participants). b) Response time -
participants who answered too quickly/slowly, i.e.,
more than a 3σ deviation from the mean response
time in either direction were excluded (8 partici-
pants). c) ”Focus” - Participants that answered too
many questions (3σ deviation from the mean ”fo-
cus”) with the probabilities 0,0.5,1, i.e., they did
not pay attention to the answers, were excluded (2
participants).

After screening, 78 participants were left (there
were participants who failed more than one screen-
ing test).

Results
Participant Irrationality
We first present the data from the on-line survey we
performed, Fig. 1. The survey included four ques-
tions; the first and second measured the conjunc-
tion fallacy, while the third and fourth measured the

Figure 1: Top-left: Number of irrational answers
per participant; Bottom-left: (ir)rational answers
(white=rational, black=irrational); Top-right: his-
togram of the number of irrational answers per par-
ticipant; Bottom-right: distribution of the irrational-
ity value per question.

disjunction fallacy. As can be seen, the percentage
of irrational judgments replicates previous reporting
(Charness, 2009). Furthermore, only 8 out of the 78
participants were rational in all questions.

These data suggest that a questionnaire involving
multiple questions and different types of fallacies
can reveal the ubiquity of irrational judgments.

Moreover, as detailed in the next sections, ana-
lyzing each participant individually throughout the
questionnaire enables a glimpse into the dynam-
ics of irrational decision making. For example,
comparing the first and last questions, which asked
about the same concepts, reveals that only 45 par-
ticipants (58%) maintained their “rationality”, i.e.,
answered both questions (ir)rationally. While this
can be interpreted as inconsistency, the participants
were given more information about the concepts be-
tween the two questions and thus may represent a
dynamic mental process (see below).
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Weak Measurements of Concept-Qubits
In our model, we propose that each concept is rep-
resented by a single qubit: Concept A is represented
by |ψ〉A, while a different concept, B is represented
by another qubit, |ψ〉B. Thus, the complete two-
concept quantum state is represented by

|ψ〉AB =a00|0〉A|0〉B +a10|1〉A|0〉B+ (3)
a01|0〉A|1〉B +a11|1〉A|1〉B

|∑
i j

ai j|2 =1 (4)

P(A) =TrB(A〈1|ψ〉AB〈ψ|ψ0〉A) (5)

=(1/
√

2)(a10(a00 +a10)+a11(a01 +a11))

P(B) =TrA(B〈1|ψ〉AB〈ψ|ψ0〉B) (6)

=(1/
√

2)(a01(a00 +a01)+a11(a10 +a11))

P(A∩B) =A〈1|B〈1|ψ〉AB〈ψ|ψ0〉B|ψ0〉A (7)
=(1/2)a11(a00 +a10 +a01 +a11)

P(A∪B) =(A〈1|B〈0|+A 〈0|B〈1|+A 〈1|B〈1|)×
ψ〉AB〈ψ|ψ0〉B|ψ0〉A (8)

=(1/(3
√

2))(a10 +a01 +a11)×
(a00 +a10 +a01 +a11)

This representation has three free parameters
due to normalization (eq. (4)) as compared to
the two parameters of previous models (Trueblood
and Busemeyer, 2011; Pothos and Busemeyer,
2009; Franco, 2016). For each participant and
each conjunction (disjunction) question, we obtain
three reported probabilities, namely, p(A), p(B) and
p(A∩B) (or (p(A∪B)).

We introduce weak measurements as the mea-
surement process in our model (Aharonov and Vaid-
man, 1991). For new questions regarding con-
cepts about which there is no information, the pre-
selected state is given by the fully superposed state
|ψ0〉 = 1/

√
2(|0〉+ |1〉). The post-selected state is

the answer in the questionnaire, in our case, always
|1〉 of the relevant concept-qubit. The mental quan-
tum operation each participant performs in each
question transforms the initial state to the final one.
This is represented by |ψ〉AB〈ψ|. In other words, the
participants’ mental process of how they incorpo-
rate new information is represented by a projection

operator.
This model enables the calculation of the full

quantum mental state representation given the re-
ported question probabilities. Under the formal-
ism from eq. (3) we denote the constraints eqs. (4)
and (8).

For the conjunction questions, we used eqs. (4)–
(7)), and for the disjunction questions, we used
eqs. (4)–(6) and (8)). We numerically solved this
set of four non-linear equations with four variables,
which resulted in a full quantum state for each par-
ticipant and each question.

Entanglement and Irrationality
While the calculation of the full quantum state from
the probabilities does not generate any prediction, it
does enable us to calculate entanglement. We cal-
culated the two-qubit pure-state entanglement us-
ing the concurrence measurement (Stolze and Suter,
2004):

C(|ψ〉) = 2 · |a00 ·a11−a01 ·a10| (9)

where C ∈ [0,1], so that if C = 0, the state is fac-
torized, whereas if C > 0, the state is entangled.
In the data analysis, we defined a stricter thresh-
old for entanglement, namely, a state representing
a participant’s answer is considered entangled only
if C > 0.2.

This quantum entanglement calculation enables
us to analyze its relation to the amount of irrational-
ity of the reported probabilities, eq. (1). Hence, we
can compute both entanglement and irrationality for
each participant and each question , as shown in
fig. 1.

As can be seen in Fig. 2, with our strict defini-
tions of irrationality and the entangled state, only
two out of the 78 participants were both irrational
and non-entangled in this question. Fig. 3 shows
that this “quadrant” was sparse in all questions, i.e.,
out of all the participants/questions (312 in total),
only 5.8% (18 answers) were irrational and separa-
ble. More quantitatively, we can compute the fol-
lowing conditional probabilities:

P(rational|low entanglement) = 75% (10)
P(high entanglement|irrational) = 81% (11)
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Figure 2: Irrationality as a function of Entangle-
ment (concurrence calculation).

Finally, the questionnaire enables us to follow the
dynamics of irrational judgments and the ensuing
entanglement. As can be seen in Fig. 3, entangle-
ment is monotonically non-decreasing as the ques-
tionnaire progresses. This is expected as more in-
formation regarding the concepts is revealed, i.e.,
as the story of Emma and Liz unfolds. The intri-
cate connections between the storylines generate a
quantum entanglement of the representative quan-
tum states.

Discussion and Future Work
We have presented a quantum model with respect to
the conjunction and disjunction fallacies that repre-
sents each concept as a separate qubit and treats the
questions as quantum weak measurements.

While previous quantum cognitive models have
treated concepts as qubits, (Busemeyer and Bruza,
2012), they have done so on overall data, i.e., by
aggregating answers from many participants, thus
representing the “concepts” as a whole. In contrast,
our model attempts to represent individual men-
tal states of participants by fitting their answers to
a specific quantum projection operator within the
weak-measurement framework. This framework as-
sumes that participants start with an ignorant repre-

Figure 3: Distribution of rational/irrational and
entangled/non-entangled participants for all the
questions.

sentation of the concept, represented as a full super-
position of all possible representations as the “pre-
selected” quantum state. The framing of the ques-
tion “post-selects” the end quantum state, which en-
ables us to fit the quantum operator, represented as a
projection of a full quantum state of both concepts,
from the data.

This representation gives new insights into the
connection between the quantum mental represen-
tation of concepts and irrational judgments. More
specifically, the data suggest that irrational judg-
ments mostly occur for entangled quantum states,
whereas separable states occur mostly when ratio-
nal behavior is observed.

Cognitively, one can speculate that rational judg-
ment regarding two concepts implies that they are
separable and do not relate to or influence each
other. This separability thus conveys no “cognitive
interference” that can cause irrational judgments.
On the other hand, highly entangled concepts, i.e.,
concepts that relate to and influence each other in
a tight manner, will result in more irrational judg-
ments.

Our participant–question-specific model enables
us to analyze the dynamics of entanglement
throughout the questionnaire. As hypothesized by
the connection between concepts and entanglement,
the more information is revealed throughout the
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questionnaire regarding the concepts, the more en-
tangled they become. We have shown that entangle-
ment indeed rises on average, and more specifically,
that for the same question, for answers at the begin-
ning and the end of the questionnaire, entanglement
increased.

The proposed model holds promise in the form of
scalability. The previous concept-as-basis models
did not scale well when introducing more than two
concepts, since introducing even a single new con-
cept immediately imposes two relations between the
previous two concepts. This occurs since all con-
cepts lie in the same Hilbert space. Our concept-as-
qubit model enables the introduction of more con-
cepts, as they expand the Hilbert space and enable
arbitrary relations between the concepts. While the
increase in free parameters is exponential in the
number of concepts in our model, measures can be
computed from the inferred quantum state; the most
promising are multipartite entanglement measures.
Future work will explore this direction with a more
detailed questionnaire that involves more than two
qubits and their interaction.
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Abstract 

This paper applies a cognitive modelling approach to model 
decision making of naïve subjects in virtual emergency 
situations. Virtual environments (VE) can be used as a virtual 
laboratory to investigate human behaviour in simulated 
emergency conditions. Cognitive modelling methodology and 
human performance data from VEs can be used to identify the 
problem solving strategies and decision making processes of 
general personnel in offshore emergency egress situations.  
This paper demonstrates the utility of decision trees as a 
cognitive tool for two main purposes: 1) assessing VE 
training curriculum and 2) predicting human behaviour. To 
show these capabilities, the results of two empirical studies 
are compared using a decision tree induction approach. The 
first experiment investigated the learning and inference 
process of participants trained using a lecture based teaching 
(LBT) approach. The second experiment used another 
pedagogical approach – simulation-based mastery learning 
(SBML). Overall, decision trees were found to be a useful 
method for evaluating the efficacy of VE training, and as a 
basis for predicting individuals’ decision-making 
performance.  
 

Keywords: decision trees; decision making in emergencies; 
virtual environments; offshore emergency egress; training 
efficacy 

Introduction 

Offshore oil and gas platforms operate in remote and harsh 

maritime environments. As a result, offshore emergencies 

are complex, dynamic, and high-risk situations. Personnel 

responding to these emergencies are faced with uncertainty 

in managing the situation, and major time pressure in safely 

evacuating the platform. Decision making in high-stress 

emergency situations can vary from person to person. This 

variability could be a result, in part, of conventional training 

in which people tend to employ different learning strategies 

and develop their understanding of emergency protocols 

differently (Musharraf et al., 2016). However, individual 

differences and unpredictable responses to emergency 

situations can undermine the emergency response 

operations. Therefore, effective training in emergency 

response and preparedness is critical for ensuring offshore 

safety.  

Virtual environments (VE) can address existing  training 

gaps and augment conventional offshore safety training by 

providing artificial experience that would otherwise be too 

dangerous to practice (Smith et al., 2017). VE technology 

can allow offshore operators to familiarize personnel with 

the worksite and to practice emergency exercises before 

going offshore. However, verification of the VE training 

curriculum is required to confirm it meets the intended 

training purposes.  

Cognitive modelling methodology can be used to inform 

the quality of VE training. Developing a cognitive model of 

human behaviour in these virtual emergency situations can 

provide valuable insight with regards to improving offshore 

safety systems and training programs. The VE allows 

researchers to observe how humans use information to 

accomplish specific tasks (Musharraf et al., 2016; Roth et 

al., 1992). Cognitive modelling methodology and human 

performance data from virtual environments can be used to 

identify the problem solving strategies and decision making 

process (e.g. model the knowledge base and inference 

process) of personnel in offshore emergency situations.  

This paper demonstrates the use of a cognitive modelling 

methodology – decision trees – to evaluate the efficacy of 

VE training. This approach was introduced by Musharraf et 

al. (2016) and is based on two experimental studies that 

investigated the effectiveness of VE training curriculum on 

competence. The model focuses on the decision making 

process of naïve subjects in virtual emergency situations, 

particularly the participants’ route selection strategies. The 

first experiment involved lecture-based teaching (LBT). 

Participants in the experiment showed variability in 

responding to emergency situations. The variability 

manifested itself in many different decision strategies. To 

address this variability and to improve learning outcomes, a 

second experiment was designed, which employed a 

different pedagogical approach called simulation-based 

mastery learning (SBML) (McGaghie et al., 2014). 

Subsequently, the in-simulation performance of participants 

from both studies was compared using decision trees.  

The paper describes the theoretical framework, data 

collection process, and how the knowledge bases were 

created. Further, it explains the algorithm that runs the 

146



 

inference engine to produce the decision trees. A process for 

testing the prediction accuracy of the decision trees is also 

described.  

Theoretical Background 

Cognitive Functions 

Four major cognitive functions are performed by personnel 

in emergency egress situations: perception, interpretation, 

decision making, and execution. For example, in an 

emergency, personnel hear an alarm and are required to 

muster at their designated muster or lifeboat stations by 

following a safe egress route. These cognitive functions are 

repeated based on the personnel’s situational awareness and 

whether they encounter hazards or obstructed routes.  

 Perception – perceive audio-visual cues from the 

environment. 

 Interpretation – analyze the perceived cues and 

infer what the alarm and public address (PA) mean 

(i.e. which route is obstructed, where to muster). 

 Decision Making – assess different potential egress 

routes and choose the safest path.  

 Execution – follow egress route until designated 

muster or lifeboat station is reached. 
 

Learning and Inference 

This paper investigates how people develop and use 

different problem solving strategies, specifically route 

choices, given their VE training. This is modeled by a 

knowledge base and an inference engine. In the model, all 

the knowledge gained from training and experience in the 

VE is stored in a knowledge base. The content of the 

knowledge base is then used by the inference engine to 

develop a human reasoning structure. Figure 1 shows the 

inference process.  
 

 
 

Figure 1: Knowledge Base and Inference Engine 

 

Knowledge in the knowledge base is represented using a 

matrix of training examples. Scenarios are represented by 

S1, S2,…, Sn. Attributes of the scenario are represented by 

A1, A2,…, An.  Actions taken are represented by E1, E2,…, 

En. The values of the attributes are represented by Vij, where 

the value represents the j
th

 value of the i
th

 attribute. The 

knowledge matrix is used by the inference engine to 

construct a reasoning algorithm. An inductive reasoning 

approach – decision tree – was used in this paper. Decision 

trees were selected based on their visual simplicity and 

diagnostic capabilities. Decision trees can be constructed 

relatively quickly compared to other methods, such as 

artificial neural networks, or support vector machines 

(Duffy, 2009). Another benefit is that they do not require 

any prior assumptions about the data.  

Decision Tree Induction 

The goal of the decision tree induction is to classify the 

content in the knowledge base into groups such that the data 

set in each group belongs to the same class (Badino, 2004). 

The classification is performed based on the value of 

selected attributes. Several attribute selection measures are 

available, including information gain, gain ratio, and Gini 

index. This paper uses the ID3 decision tree algorithm, 

which uses information gain as an attribute selection 

measure (Han et al., 2011). Information gain is calculated 

using the idea of entropy. Given the entropy of a data set S, 

information gain of an attribute A can be calculated using 

equation 1. 
 

Gain (A) = Entropy (S) – Entropy (A)      (1) 
 

Here, Entropy(A) presents the weighted average 

uncertainty of the groups created by classifying the data set 

using attributes (Ai). Details of entropy calculation can be 

found in Han et al. (2011). The decision tree algorithm takes 

two basic inputs: the data set in the knowledge base and the 

list of scenario attributes. During the decision tree induction, 

data are iteratively classified using the attribute that has the 

highest information gain, as highest gain refers to lowest 

uncertainty. The following steps are repeated until no 

attributes are left for classification, or the data set is empty, 

or data in each group belong to the same class and no 

further classification is needed. 

Step 1: For each attribute Ai, compute the value of 

information gain Gain(Ai). 

Step 2: Choose the attribute with the highest gain 

Gain(Ai) and classify remaining data set based on Ai.  
 

More details on the decision tree algorithm can be found 

in Musharraf et al. (2016). 

Experimental Methodology 

Two experiments were conducted: the first focused on 

conventional LBT methodology and the second focused on 

SBML. Both studies used a VE called the All-hands Virtual 

Emergency Response Trainer (AVERT). This section will 

describe the training, data collection in AVERT, formation 

of the knowledge base, and resulting decision trees.  

AVERT Simulator 

AVERT is a first person perspective VE that was developed 

to train basic offshore safety practices to general personnel – 
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individuals whose responsibility in an emergency is to 

muster at their designated muster stations (House et al., 

2014). AVERT scenarios involve basic wayfinding, alarm 

drills, and emergency response exercises. AVERT delivers 

training scenarios, tracks in-simulation performance metrics, 

and provides corrective feedback.  

 

LBT was used to train 36 participants in how to 

successfully muster during offshore emergency situations in 

the VE. Participants attended three separate sessions. Each 

session involved a computer based training tutorial, 

followed by four training scenarios, and four testing 

scenarios in AVERT. The content of the tutorials included 

basic offshore emergency preparedness, alarm recognition 

and assessing the emergency situation, and hazard 

avoidance. Participants only received one exposure to each 

scenario and were provided minimal feedback on their 

performance. Details of the study can be found in (Smith et 

al., 2015). Data from 17 of the participants (13 male and 4 

female, with a mean age of 26.8 years, standard deviation of 

5.0 years) were used in this paper for comparison to the 

SBML approach. 

 

SBML was used to train 55 participants in offshore 

emergency egress using the VE. This pedagogical approach 

was used to ensure that participants acquired and 

demonstrated the knowledge and skills necessary before 

advancing to more complex emergency situations. SBML 

involved a series of four training modules. Each module was 

designed to train specific learning objectives and gradually 

taught participants the platform layout, how to recognize 

alarms, what to do in the event of blocked routes, as well as 

how to assess the situation and avoid hazards while 

evacuating the platform. As part of the SBML training, 

participants were required to achieve demonstrated 

competence in all training and testing scenarios. The 

participants were tested repeatedly on their competence over 

the course of the training modules. They received detailed 

feedback on their performance after each attempt of a 

scenario. To achieve demonstrated competence, some 

participants required multiple attempts at the scenarios. 

Details of the study can be found in (Smith et al., 2017). 

Data from 15 randomly selected participants (12 male and 3 

female, with a mean age of 25.6 years, standard deviation of 

8.0 years) were used for comparison. 

Data Collection and Modelling 

Two training modules were the focus of the decision tree 

analysis: the ‘Alarm Recognition’ and ‘Assessing Situation’ 

modules. In both the LBT and SBML approaches, 

participants had to perform in twelve scenarios. The training 

scenarios differed between the training approaches as the 

SBML training provided more in-simulation instruction and 

feedback. However, the testing scenarios were the same for 

both training approaches. A subset of scenarios was used to 

populate the knowledge base (8 and 9 scenarios for the LBT 

and SBML training, respectively). Half of the scenarios 

were used to generate the knowledge base for the ‘Alarm 

Recognition’ module (denoted KB1) and the remaining 

scenarios were added to the knowledge base for the ‘Assess 

Situation’ module (denoted KB2). Two test scenarios were 

used to test the prediction capabilities of the decision trees 

(scenarios T1 and T2). 

 

Knowledge Matrix Following rule based methodology, a 

knowledge matrix was created using the data from the 

participant’s performance in the training scenarios. Data to 

populate the knowledge matrix was collected from the 

AVERT report files generated for each scenario and from 

observations logged in-situ. Table 1 lists the attributes 

varied for each scenario and their possible values.  
 

Table 1: Possible values for each attribute. 
 

Attribute Possible Values 

Final destination Muster, Lifeboat 

Alarm type None, GPA, PAPA 

Hazard presence No, Yes 

Route directed by PA None, 1st, 2nd 

Obstructed route None, 1st, 2nd 

Previous route selected 1st, 2nd 

 

Scenario Frames Participants were required to complete a 

series of scenarios of varying complexity. Basic scenarios 

involved participants practicing their egress routes and 

muster procedures. More complex emergency scenarios 

were dynamic in the sense that the value of some attributes 

changed during the scenarios. To capture the dynamic 

aspect, these scenarios were split into two or more frames. 

Figure 2 shows an example of two frames for a training 

scenario (S9) and how the knowledge matrix is updated 

based on the change in attributes of the scenario.  
 

 
 

Figure 2: Example of scenario frames F1 and F2 for S9. 

 

Table 2 shows the state of the knowledge base for a sample 

participant in the SBML program after finishing all training 

modules. Each row in the knowledge base contains the 

values of different attributes for the scenario and the 

corresponding action. For both studies, the participants’ 

perceived scenario attributes and corresponding actions for 
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Table 2: Knowledge matrix for alarm recognition (KB1) and assessment emergency (KB1 and KB2) training modules. 
 

Category Scenario 
Attributes Actions 

End Point Alarm Route by PA Hazard Blocked Route Previous Route  

 

 

 

KB1 

S1 Muster None 1st No None N/A Primary 

S2 (F1) Lifeboat None 1st No None 1st Primary 

S2 (F2) Muster None 2nd No None 1st Secondary 

S3 Lifeboat None None No None 2nd Primary 

S4 Muster GPA None No None 1st Primary 

S5 Muster GPA None No None 1st Primary 

Test 1 T1 Muster GPA 1st No None 1st Primary 

 S6 Lifeboat PAPA 1st No 2nd 1st Primary 

 S7 Lifeboat PAPA 2nd Yes 1st 1st Secondary 

KB2 S8 Lifeboat GPA 2nd Yes 1st 2nd Secondary 

 S9 (F1) Muster GPA 1st Yes 2nd 2nd Primary 

 S9 (F2) Lifeboat PAPA 1st Yes 2nd 2nd Primary 
 
 

each scenario were included as entries in the knowledge 

base. Because the SBML training required participants to 

reattempt scenarios until they correctly completed the task, 

only successful route strategies were stored as entries in the 

knowledge matrix. 

 

Decision Trees Decision trees visualize how participants 

formed decisions based on the knowledge matrix. Decision 

trees also provide insights on what attributes had the biggest 

impact on participants’ decision making. Figure 3 shows a 

decision tree based on the knowledge matrix in Table 2.  
 

 
 

Figure 3: Decision tree developed after KB1. 
 

In this case, the participant’s route selection was decided 

based on their understanding of the information from the PA 

announcement. If the PA directed them to a safe route, then 

the participant took that route. If the PA did not provide any 

information regarding the safety of the route options, then 

the participant’s choice defaulted to their primary egress 

route. The tree can subsequently be used to predict 

participants’ choice of route (i.e. primary or secondary) for a 

given future scenario. 
 

Results 

For presentation purposes, the participants’ decision trees 

after module 2 and 4 (‘Alarm Recognition’ and ‘Assess the 

Situation’) of the SBML experiment were developed to see 

how the trees evolved as more training content was added to 

the knowledge base. The different decision trees are 

summarized in Table 3. The detailed decision trees for the 

LBT experiment can be found in Musharraf et al. (2016). 

 

Comparing the Alarm Recognition Decision Tree  

In an emergency situation, the alarm type dictates the final 

muster location. The main learning objective for this module 

was for participants to listen to the alarm and the PA 

announcement and take the safest route available in 

response to the situation. A decision tree for this situation is 

depicted in Figure 3. Eighty percent of participants in the 

SBML study developed the decision tree depicted in Figure 

3 before the test scenario (T1). Forty one percent of 

participants in the LBT study had the same decision tree. 

Twenty percent of SBML and 24% of LBT participants 

based their route decision on alarm type or end point when 

the PA did not provide any route information. In this case, 

the participants interpreted that the general platform alarm 

(GPA) meant taking the primary route, and that the prepare 

to abandon platform alarm (PAPA) meant taking the 

secondary route.  

Comparing the Assess Emergency Situation Tree  

In an emergency situation, it is critical that personnel listen 

to the PA announcement, continually assess their 

surroundings, and follow the safest egress route available. If 

personnel encounter an obstructed route, they must re-route 

in response to the hazardous situation. Building on earlier 

learning objectives, the ‘Assess the Situation’ module 

trained participants how to assess the emergency situation, 

avoid hazards, and follow the safest egress path to the 

designated muster or lifeboat station. 

It was expected that most participants would select the 

safest route based on the information in the PA 

announcement. In the SBML study, 67% of participants 

continued to use the same decision tree, selecting their 

egress route based on PA information (as shown in Table 3).  

In the LBT study, only 24% of participants had the same 
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Table 3 – Resulting decision trees for 15 SBML participants after finishing training module 2 (S5) and module 4 (S9). 
 

Subject Decision rules until test scenario T1 Decision rules until test scenario T2(F1-F3) 
A02, A06 

A10, A19 

A22, A38 
A44, A45 

A53, A60 

 

 

 

 
Remains the same. 

 

A27 
A33 

A62 

 

 
 

 

 
Remains the same. 

 

A29 

 

 

 
A42 

 

 
 
 

decision tree. Similarly, 20% of the SBML participants 

continued to use the strategy in which the alarm type or end 

point indicated the route choice in the absence of a PA.  

When participants failed to perceive the PA instructions, 

some individuals put emphasis on different attributes to 

make their decision. Some participants followed the alarm 

type and PA, whereas others considered the presence of 

hazards, or route obstructions. Thirteen percent of 

participants in the SBML study demonstrated more complex 

decision trees to manage the emergency conditions. 

Conversely, the remaining participants in the LBT study 

(76%) had more varied behaviours. The following 

summarizes the strategies observed for LBT participants: 

 41% developed complex decision trees that 

incorporated special conditions for the PA 

announcements, alarm type or end points, obstructed 

routes, and hazards. 

 12% selected the same route regardless of the 

emergency conditions. 

 23% appeared lost. Decision trees were not 

developed for these participants as they were unable 

to form a generalization from the knowledge base. 
 

Prediction Accuracy of the Decision Trees 

To determine the accuracy of the decision trees, they were 

used to predict decision making in subsequent scenarios. 

Specially, they were used to predict the participants’ route 

selection in test scenarios (T1 and T2). The predictions were 

compared to the actual routes the participants took in those 

scenarios. The prediction accuracy was calculated based on 

the average number of successful matches between the 

decision tree predicted outcomes and the observed outcomes 

of the participant. Table 4 shows the results for the SBML 
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study. The decision trees were able to predict the route 

selection of participants with 94% accuracy. 
 

Table 4: Percentage Prediction Accuracy. 
 

Participant No. % Prediction Accuracy 

A02 100 

A06 80 

A10 100 

A19 100 

A22 80 

A27 100 

A29 100 

A33 75 

A38 100 

A42 100 

A44 100 

A45 100 

A53 100 

A60 75 

A62 100 

Average 94 

 

Efficacy of LBT and SBML Training 

Overall, the SBML participants’ behaviours in responding 

to emergencies over the course of their exposure to several 

scenarios gradually converged to a few expected decision 

trees. Conversely, the LBT participants’ behaviours in 

responding to emergencies diverged. At the alarms 

recognition phase, the participants in the SBML study had 2 

different strategies and the participants in the LBT study had 

6 different strategies.  In the advanced emergency phase, the 

SBML participants had 4 different strategies and LBT 

participants had 10 different strategies for assessing the 

emergency conditions and safely evacuating the platform. 

All of the observed route strategies for the SBML 

participants led to the successful completion of the test 

emergency scenario. 

Many of the LBT participants had a poor understanding 

of the egress procedures and were overall less compliant 

with rules. In general, participants in the LBT study put 

more weight on attributes that were not necessarily useful in 

making egress decisions. The variability and incorrect 

behaviours modeled in the decision trees by the LBT 

training show that this form of training was inadequate for 

preparing participants for emergency conditions. The SBML 

training resulted in higher safety compliance and more 

concise decision trees. This suggests that participants from 

SBML training were better equipped for managing the 

emergency scenarios. It is likely that these positive results 

are because the SBML study placed more emphasis on 

training participants to pay attention to the PA and act 

according to the directions of the PA. It may also be due to 

the fact that the SBML participants were required to practice 

the task until competence was demonstrated. The results of 

this study show that SBML training resulted in decision 

trees that better reflect competence and reduced variance in 

safety compliance in comparison to the LBT training. 

Conclusion 

Modelling human behaviour in emergency conditions can be 

difficult. The paper outlined a cognitive modeling approach 

that is suitable for modeling decision making and predicting 

human response in virtual emergency scenarios. The 

decision tree modeling approach was shown to be 

appropriate for assessing the training efficacy of two 

different training programs: lecture based training (LBT) 

and simulation based mastery learning training (SBML). 

The visual representation of the participants’ strategies in 

emergency situations was useful in identifying the strengths 

and weaknesses of the training methods. Decision tree 

modelling could help inform the design and assessment of 

future VE training curriculum and predict the performance 

of general personnel in emergency situations.  
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Abstract

In many transportation modes, automation is added to
increase comfort, efficiency, or to reduce human errors.
Automation has a direct impact on the drivers workload,
which can even be higher then without automation. In
this paper we propose the development of a virtual driver
that can predict human workload in early design phases
of automation and assistant systems. We describe the au-
ditory workload model in a closed-loop simulation and
an early validation.

Keywords: workload; cognitive modelling; driver mo-
del; n-back task

Introduction
In many transportation modes, like in cars, aeroplanes, or on
ships, more and more automation is added, with the objective
to increase comfort of the passengers, to make transporta-
tion more efficient and cheaper, or to reduce human errors.
Introducing automation should reduce human workload and
consequently human errors, but Metzger and Parasuraman
(2005) and others have shown that additional automation can
even increase mental workload. They conclude that opera-
tors “should be given an active role in the system to ensure
that they can detect and respond to malfunctions in a timely
manner” (Metzger & Parasuraman, 2005, p. 13). This para-
digm becomes especially interesting, with the current trend
in automotive industry on autonomous driving, where drivers
are more and more forced into a monitoring role. In order to
allow an evaluation of the workload induced by automation
systems on drivers in early design phases, we propose the use
of virtual drivers, which predict human behaviour in traffic
simulations. Using a virtual driver has many advantages for
the automotive industry. First, one can not only use them for
evaluations in early design phases, where studies with users
are expensive or not even possible, but it also allows to evalu-
ate a lot of different driving scenarios that cannot be covered
with driver studies, because it is either to expensive, too time
consuming, or to risky.

Our virtual driver1 is implemented in the cognitive archi-
tecture CASCaS (Cognitive Architecture forSafety Critical

1Or virtual tester in general, as CASCaS is domain independent

TaskSimulation). In the following, we will refer to our vir-
tual driver as “CASCaS driver”. In order to allow also pre-
diction of workload, we will extend our cognitive architecture
CASCaS with different workload measures. Development of
the workload model in CASCaS will be done in iterations,
in order to handle the complexity of the workload topic. In
a first step, Wortelen, Unni, Rieger, and Lüdtke (2016), des-
cribed different measures that could be implemented for pre-
diction of workload of different modules in CASCaS, and im-
plemented and validated a first version of a measurement in
an open-loop simulation. In this paper, we will describe the
second step, the implementation of a closed-loop simulation.

State of the Art

Cognitive Architectures are tools, which provide executa-
ble models of human behaviour based on psychological and
physiological models of human behaviour. In this paper
we will describe the cognitive architecture CASCaS, which
has been developed since 2004 (Lüdtke, 2004) in our in-
stitute. Main driver for the development of CASCaS was
a more application-oriented approach. In contrast to that,
many cognitive architectures like ACT-R (Adaptive Cont-
rol of Thought Rational, (Anderson et al., 2004; Anderson,
2000)), or SOAR (Lehman, Laird, Rosenbloom, et al., 1996)
were developed for creation and evaluation of theories and
models of human cognition. Beside that, more and more
cognitive architectures are now used to predict also pilot
or driver behaviour, for example Salvucci (2006) describes
a driver model in ACT-R, and Fuller (2010) describes a
driver model in QN-MPH. Beside driver modelling, cogni-
tive architectures are also used in aviation, as described in
the Human Performance modelling (HPM) element within
the System-Wide Accident Prevention Project of the NASA
Aviation Safety Program, where they performed a compa-
rison of error prediction capabilities of five cognitive ar-
chitectures (Foyle & Hooey, 2007), including ACT-R and
(Air-)MIDAS (Corker & Smith, 1993; Gore, 2011). CAS-
CaS has been applied in several projects, in order to model
perception (L̈udtke & Osterloh, 2009), attention allocation
(Wortelen, L̈udtke, & Baumann, 2013), decision making of
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drivers (Weber, Steenken, & Lüdtke, 2013) and human errors
of aircraft pilots (L̈udtke, Osterloh, Mioch, Rister, & Looije,
2009) and car drivers (L̈udtke, Weber, Osterloh, & Wortelen,
2009).

There are several model-based approaches to assess the le-
vel of cognitive workload in a specific situation. The work-
load model of McCracken and Aldrich (1984) offers a scale,
which assigns workload levels to specific kinds of human
actions like “recall, memorize”, or “visually inspect”. It dis-
tinguishes four types of workload: visual, auditory, cognitive
and psycho-motor. For example, this model was used to an-
notate behaviour primitives in cognitive models created with
the cognitive architectures MIDAS (Gore, 2011) with asso-
ciated workload levels. However, the model of McCracken
and Aldrich is used in an analytical way and does not assess
workload of a human operator online.

In the current work, we outline a model-based appro-
ach for the online assessment of workload. For real hu-
man operators, online assessment of workload is ongoing
research, and typically performed based onphysiological
measures. Physiological measures are quite popular as
they can continuously record the operators response wit-
hout actually intruding into the operators task. The most
commonly used physiological measures for workload asses-
sment are electrocardiogram (ECG) and electro-dermal acti-
vity (EDA). Previous researches have consistently demon-
strated that increased workload levels lead to increased heart
rate (HR) and decreased heart rate variability (HRV) (Kramer,
1991). Solovey, Zec, Perez, Reimer, and Mehler (2014) re-
corded ECG and EDA while driving and were able to dis-
criminate three driving situations with increasing control de-
mand. Brain activation measurements may provide the ne-
cessary specificity and state quantification required for online
prediction of workload.

Modelling

In the following sections, we will describe our modelling ap-
proach, starting with a short introduction to CASCaS and the
driver modelling, followed by the workload model implemen-
ted in CASCaS.

CASCaS

The cognitive architecture CASCaS (Cognitive Architecture
for Safety Critical Task Simulation) has been developed
since 2004 (L̈udtke, 2004), and has since then been con-
tinuously improved and used in several research projects
(Lüdtke, Osterloh, et al., 2009; Lüdtke, Weber, et al., 2009;
Lüdtke & Osterloh, 2009; Weber et al., 2013; Wortelen et al.,
2013). Main focus during the development of CASCaS has
been the usage in real-time simulators, mainly car and air-
craft simulators, to cover complex scenarios as needed for
the industrial application as virtual tester. As many cognitive
architectures, CASCaS has several components as depicted in
Figure 1, which cover different aspects of human behaviour.
Main component of CASCaS is the “Knowledge Processing”

component, which is based on Anderson’s theory of behavi-
our levels (Anderson, 2000):

• cognitive layer2: decision making in unfamiliar situati-
ons

• associative layer: rule-based behaviour and decision ma-
king

• autonomous layer: processing without thinking in daily
operations, i.e. sensory-motor programs like steering,
braking

Figure 1: Layered Architecture of CASCaS; (Weber et al.,
2013)

For the driver model, only the associative layer and the au-
tonomous layer are used. CASCaS main input is the for-
mal procedure for the associative layer, which describes the
interaction with the environment in form of IF-THEN ru-
les. CASCaS procedures are specified in a simple, human-
readable, CASCaS-specific text format, allowing also non-
computer experts to read, understand, and use the language
for modelling without the need to have deep understanding of
a programming language. The procedures that are executed
by CASCaS are stored in the Memory component, which also
contains the declarative memory.

In addition to the Knowledge Processing, additional com-
ponents for perceptual and motoric processes are part of the
architecture, as an interface to the Simulated Environment.
The visual component for example, models perception in the
focus and in the visual field (L̈udtke & Osterloh, 2009). At
each moment, system state and processing of the procedure
create the mental model and are expressed as an ordered set
of goals and sub-goals that have to be accomplished – the so
called goal agenda. Processing of the goal agenda follows
these steps:

1. A goal is selected from the goal agenda
2. All rules containing the goal in their Goal-Part are col-

lected, their conditions evaluated by retrieving the nee-
ded information from the memory, and organized into a
conflict set.

2exceptprogramming interfaces no model of the cognitive layer
is implemented in CASCaS
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3. One rule is randomly selected from the conflict set and
fired, which means that the motor, percept, and/or me-
mory actions are sent to the motor, percept and memory
component respectively, and the sub-goals are added to
the goal agenda.

This process is iterated until no more rules are applicable, and
all goals are achieved.

Driver Model

The driver model is a combination of a procedure for the as-
sociative layer, and some sensory-motor programs on the au-
tonomous layer. The procedure handles decisions that have to
be made by the driver, e.g. application of traffic rules, over-
taking of other cars, and general interaction with the car and
environment. General interaction with the car means opera-
tion of possible assistant systems and car interfaces like radio,
and GPS by the associative layer. A more detailed descrip-
tion on the driver model that has been used is described in
Weber et al. (2013). In our scenario (driving on a German
highway), these rules take care of speed limits, and decide if
other cars have to be overtaken or to follow them. For this,
the traffic is classified onto lanes and positions relative to the
ego car, i.e. ahead, behind, left ahead, etc. In addition to that,
the distance and speed of the other cars is estimated by the
model based on perceived angular sizes.

The motor programs on the autonomous layer cover the
actual lateral and longitudinal control, i.e. control of the
steering wheel for turns and lane keeping, or control of the
pedals for braking and acceleration. For the lateral con-
trol, we implemented a simple one point steering control
(PD-controller). The longitudinal control has been imple-
mented on the basis of probabilistic models, as described by
(Eilers & Möbus, 2014). In general, the probabilistic models
are a set of Bayesian Networks, which at each point in time
give the probability for a certain output, in our case the bra-
king pedal value and the acceleration pedal value. The proba-
bilities used in the Bayesian Networks are learned from hu-
man driver behaviour that has been previously recorded in a
highway scenario. Note that the decision to brake, overtake
or which speed to drive is made on the associative layer, but
the autonomous layer performs the actual motor actions.

Workload in Closed-Loop Simulation

As a first step of the development towards a workload mo-
del, Wortelen et al. (2016) implemented aWorking Memory
Load as a mean for workload, which is defined as rate of
information elements written to memory, in an open-loop
simulation in CASCaS. They tested the working memory
load, by using a n-back speed regulation task. N-back
tasks have been widely used as a benchmark in the field of
neuroscience to influence memory load and task difficulty
(Miller, Price, Okun, Montijo, & Bowers, 2009). The n-back
speed regulation task requires the driver to follow the speed of
then-th speed sign prior to the actual speed sign, as depicted
in Figure 2.

Figure 2: N-back Speed Regulation Task; from
(Wortelen et al., 2016)

This approach had two main drawbacks. First, an open-
loop simulation has been used, and second the driver mo-
del used by Wortelen et al. (2016) was not so sophisticated
as the driver model from (Weber et al., 2013). Open-loop si-
mulation in this case meant, that CASCaS was feed with the
data from the human drivers, and the steering and accelera-
tion actions of CASCaS are not feed back in a driving si-
mulation. The driver model of Wortelen had therefore only
placeholders for the lateral and longitudinal control to mimic
multi-tasking. As the objective of CASCaS is to be used as a
virtual driver for testing automation and user interfaces in the
car, a closed-loop simulation is necessary, i.e. the feedback
loop between driver model and driving simulator is closed in
a way that the driver model has full control of the simulated
car. The closed-loop allows then predictions of the behaviour,
without the need of data from real human drivers (with the ex-
ception of the data needed for the training of the probabilistic
models used for longitudinal control).

The objective of this paper is to describe the integration
of Wortelen’s workload model in a closed-loop simulation.
To achieve a closed-loop simulation, an extended n-back task
model from Wortelen et al. (2016) has been integrated with
the driver model of Weber et al. (2013).

In a first step, the n-back task procedure for CASCaS has
been revised. According to Juvina and Taatgen (2007) hu-
mans use two different cognitive control strategies for the n-
back task:

1. Phonological rehearsal, i.e. internally rehearsing the list
of speeds

2. Time tagging the event
For our model, we have decided to use the phonological re-
hearsal as strategy for the n-back speed task, as this strategy
was, compared to the time tagging strategy, the easiest to im-
plement, due to the lack of a temporal component in CAS-
CaS.

Each time a new speed sign is perceived, the procedure al-
ters a mental list of the speeds. The mental model maintains
dedicated associations to the memory chunks at the beginning
of the list and it’s end, see “listbegin” and “listend” in Fi-
gure3. When the number of elements is smaller than the cur-
rent n-back task, the new element is stored into the memory,
the “next” association is added from the current “listbegin”
to the new element, and then the “listbegin” and “cur-
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rent rehearsal” associations are moved to the new element.
Whenthe number of elements has reached n, the “listend”
associationis moved to the “next” chunk to mark the new list
end. During the rehearsal, the “currentrehearsal” association
is moved over each “next” association from “listbegin” to
“list end”. For each element in the list, an internal speech-

current_sign_value

current_rehearsal last_recall

list_begin

120 60 80 100nextnextnext

list_end

Figure 3: Memory Structure for Rehearsal

actionis executed to trigger the phonological loop. Each of
this internal speech actions trigger a workload event, which
are then accumulated over time as the auditory workload. In
our case, we have chosen a seven second interval for the
accumulation, because this reflects the response time that
is measured with the fNIRS. This is a small difference to
Wortelen et al. (2016), as their workload measure captured
more than the memory writes from the auditory component,
but rather all memory writes from the associative layer.

Then, as a second step, this procedure has been integra-
ted with the driver model. First, the rehearsal has been ad-
ded at the appropriate places, i.e. the rehearsal is restricted
to phases where the driver is driving ahead, and not overta-
king. Second, the sign recognition has been replaced with
the one described above, such that the list is maintained, and
the “list end” value is set as the current target speed in the
longitudinalcontrol at the autonomous layer. Figure 4 shows
a screenshot of CASCaS during the simulation. On the left
the visualisation of SILAB, the driving simulator, is depicted,
and on the right the workload visualisation of CASCaS. The
auditory workload is shown in the diagram in the middle.

Validation
For the validation of the workload measure, we have chosen
a two step approach. First, we had an internal model valida-
tion as a kind of pre-test. With this step, we make sure, that
a) the simulator setup and the scenario is working, b) the data
recording is suitable for the planned analysis, and c) the CAS-
CaS driver produces behaviour that is plausible (see below for
hypotheses). Second, we will perform another experiment in
our driving simulator with human drivers. In this experiment,
we will record the driver behaviour as well as physiological
data (fNIRS) to measure the workload of the humans.

Internal Model Validation
Objective of the model validation is twofold. First this can be
seen as a pre-test for the experiment with the humans, where
the scenario, the data recording setup, and the data analysis
can be tested before the expensive experiment. Second it can
be used for model exploration, i.e. checking the plausibility
of the CASCaS driver behaviour and improvement of the mo-
del subsequently. The plausibility of the model is expressed
in multiple hypotheses to be tested before starting the human
experiment:

1. The auditory workload can predict the n-back task level.
2. The CASCaS driver will adhere to the correct speed limit

according to the n-back level.
As a scenario for the internal model validation, we used the
same scenario as described below for the human experiment,
but without the traffic.

For hypothesis 1, we calculated Pearson’s correlationr be-
tween the n-back level and the predicted auditory workload
for each of the simulation runs. The meanr is calculated
with 0.9773, which supports hypothesis 1. In order to ana-
lyse hypothesis 2, we analysed how well CASCaS followed
the target speed according to the n-back level. For that, in a
first step we had to remove the phases where the speed was
undefined, because the number of speed signs was lower then
the current n-back level. Pearson’s mean correlationr be-
tween the current speed and the nth target speed of the 15
runs is 0.8445. A more detailed analysis of the speed driven
by CASCaS revealed, that in average over all runs, CASCaS

Figure 4: CASCaS workload visualisation while driving; for completevideo visit
https://hcd.offis.de/wordpress/wp-content/uploads/Workload-02.mp4
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made 19 errors of speed out of 169 different speed signs in
onerun. Error of speed here means, that between two speed
limit signs, the actual speed was not in a range of±10 km/h
of the target speed.

Our analysis showed, that when CASCaS had to reduce
the speed from a high speed limit (e.g. 140 or 160) to a lower
speed limit, the applied braking was not sufficient, such that
the new speed limit is not reached before a new sign arrives.
An example is shown in Figure 5.

Figure 5: Speed of CASCaS vs. Target Speed

After the target speed of 160 km/h, it goes down to 80 km/h
at time 00:29:25. As marked by the red arrow, CASCaS does
not decelerate below 90 km/h. The explanation for this is the
probabilistic model that is used for the longitudinal control.
The probabilistic model has been learned from humans dri-
ving in a driving simulator on a normal German highway. In
this scenario, subjects never exceeded 130 km/h on the one
hand, thus the model has never learned to handle fast driving.
In addition to that it can be observed, that the subjects pre-
ferred to use the motor break to decelerate, as many people
do during normal driving. While this gives a very human-like
speed control during normal cruising, the learned probabi-
listic model does not sufficiently represent driver behaviour
for the n-back speed experiment, where active braking and
more accurate speed control is required. In future versions of
the model, the probabilistic model could be replaced with a
mathematical PD controller, to overcome this problem, or re-
trained with new experimental data. Beside that, the general
driving behaviour, including the overtaking and the rehearsal
seems natural, i.e. it shows actual human behaviour.

Comparison with Human Data

For further evaluation, we conducted an experiment with 10
subjects (7 male, 3 female). All subjects where students in
an age range between 22 to 42 (mean 27.3 years) with a valid
German driving license. Most drivers had more then 10.000
km of total driving experience, 4 had between 5.000 km and
10.000 km, and only one had below 5000 km. During the
experiment, subjects where given five different n-back levels,
from 0-back to 4-back, and thus five different levels of wor-
kload, with 0-back inducing the lowest workload level, and
4-back the highest. Each n-back task lasted around three mi-
nutes and consisted of ten different speed changes randomly

distributed from 70-140 km/h in steps of 10 km/h. Speed
changes where randomly assigned, but we made sure, that
speed changes where not larger then 20 km/h at once. We had
four repetitions for each n-back task, randomly distributed to
avoid sequencing effects. Random distribution of n-back task
and speed sequence has been done once for the scenario, and
then the same order was re-used for all participants. The sce-
nario had two different traffic situations, half of the scenario
had low traffic, the other half had higher traffic. Traffic was
always ahead and slow, such that the subjects had to overtake,
but no faster traffic was induced from behind. The whole dri-
ving experiment lasted for about 60 minutes.

The subjects brain activity was constantly monitored by
using a 32 channel neuroNIRX-system (fNIRS). The ob-
jective is to use the recorded brain activity data as a source
for objective workload measurement, and to correlate it to
the CASCaS predictions (similar to (Unni et al., 2015)). The
analysis of the brain activity data is still ongoing, neverthe-
less we analysed the speed driven by the subjects, in order to
compare it to CASCaS data on hypothesis 2.

The subjects had a meanr of for their speed of 0.87, and
in total over all subjects 17 driving errors where made (mean
1.42 errors per subject). In total, 169 different speed changes
had occurred, without initial build-up phase of each n-back
task, thus subjects had a error rate of roughly 1%. It could be
observed for the subjects, that with the higher n-back levels,
also the number of errors increased (1 and 2-back: 2 errors,
3-back 6 errors, 4-back 7 errors). In comparison to that, the
model had a meanr for speed adherence of 0.75, and a total
of 166 errors (mean 12.7 errors per model run), resulting in
an error rate of 7.5%, independent of the n-back task. The
decrease in correlation of speed for the model from pre-test
to final test can be explained by the added traffic in combina-
tion with the probabilistic model for speed control. It can be
observed, that the model speeds up for the overtaking (about
10-20 km/h), ignoring also possible speed limits. Especially
in high traffic scenarios, overtaking can then take longer then
the distance between two speed signs.

Conclusion & Next Steps

Starting from previous work of Wortelen et al. (2016) and
Weber et al. (2013), we have integrated a workload model
into a closed-loop driving simulation. With that, we extended
the workload model to use the phonological loop in CASCaS,
so that the auditory workload can predict the n-back level,
and thus the workload. For the speed management, a replace-
ment or re-training of the probabilistic model should further
improve the model by reducing speed errors.

In addition to that, there are a lot of different workload
measures we can implement for the different components in
CASCaS, as already introduced by Wortelen et al. (2016).
We plan to successively implement more of these measures
and validate them against the simulator data, to see if other
models can also be used as predictor for the n-back level,
which serves as controllable workload indicator.
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Abstract 
Functional cognitive models are used to explain observed 
human behavior. Applying such models to predict behavior 
requires generalization of the model to be applied in different 
application domains but also a careful consideration of model 
input data validity. Visual attention models have already been 
validated in various domains. But elicitation techniques to 
collect valid input data that is reproducible by others are still 
missing. For visual attention prediction model input data is 
determined mainly based on discussion between experts and 
individual experience, which is difficult to reproduce. We use 
a software tool to support input validity. The tool helps users 
to create attention models. It uses images of the situations that 
are investigated for stimulating the users to virtually put 
themselves into these situations. An experiment (n=40) 
showed that using looping videos instead of static images 
stimulates imagination in a different way. It has an effect on 
the models generated by the users and needs careful consider-
ation. 

Keywords: Visual Attention; Human Factors; Supervisory 
Control; Software-supported method; Cognitive Modeling; 
Safety. 

Introduction 
Applying cognitive models for predicting human behavior 
often requires on the one hand expertise in cognitive model-
ing and on the other hand profound knowledge of the do-
main for that they are applied. To tackle the former, model-
ing tools, such as for instance CogTool have been proposed 
that are based on “zero-parameter models” (i.e. GOMs, 
KLM and ACT-Simple) (John et al. 2004) that enable hu-
man performance prediction based on automatically gener-
ated cognitive models. Such approaches can be applied by 
e.g. a designer to predict human performance for human-
machine interface (HMI) design variants. 

Most of the cognitive models cannot be generalized and 
reduced to a predefined fixed set of operators as they de-
pend on experts’ inputs to determine valid input parameters. 
Visual attention prediction models depend for instance on 
parameters that are knowledge driven and therefore require 
application domain knowledge for determining the parame-
ter values. The current process for parameter estimation is to 
ask domain experts and letting them argue and discuss about 
the parameter values. And in fact studies in various applica-
tion domains report high correlations to measured data fol-
lowing such approaches (Wickens et al. 2008, Koh et al. 

2011). But a discussion-based parameter-determination is 
hardly reproducible as the quality depends on individual 
expertise and on the composition of the expert group (to 
ensure e.g. that silent voices are also heard).  

We use a software tool, the Human Efficiency Evaluator 
(HEE) to capture the relevant knowledge for visual attention 
prediction in the specific application domain. The tool im-
plements a structured, repeatable process and is used by the 
experts individually to capture and aggregate their 
knowledge. To stimulate the knowledge capturing the tool 
depends on either images or videos that show exemplary 
situations for that the model parameters are then estimated 
by the experts.  

In this contribution we explore the experts’ capabilities to 
abstract from the very specific concrete shown situations 
and focus on identifying the differences between a video-
based and an image-based stimulus for attention modeling. 

Model-based Visual Attention Prediction 
Model-based visual attention prediction can complement 
eye-tracking studies, as it does not depend on HMI func-
tional prototypes and simulations but on human experiences 
and imagination that is captured by discussion and feed as 
parameters in prediction models. The SEEV model of atten-
tion allocation (Wickens et al. 2001) is such a promising 
model of visual attention. It describes that “the allocation of 
attention in dynamic environments is driven by bottom up 
attention capture of salient events, which are inhibited by 
the effort required to move attention, and also driven by the 
expectancy of seeing valuable events” (McCarley et al. 
2002). The SEEV model is used to predict the percentage of 
time, that someone spends looking at an area of interest 
(AOI). It is typically applied by HF experts that have a deep 
understanding of human attentional processes. The SEEV 
model relates the probability ௦ܲ of attending a specific AOI 
 :to four factors ݏ

௦ܲ = Saliency – Effort + Expectancy ∙ Task Value 

The first two coefficients, Saliency and Effort are bottom-up 
factors that describe the saliency of information displayed 
by an AOI and the effort it takes to obtain the information, 
e.g., by moving eyes and head or navigating through a 
menu. Expectancy and Task Value are top-down factors. 
They describe how often new information can be expected 

158



from an AOI and how valuable the information is for ac-
complishing the tasks of the human operator.   

While the bottom up parameters can be estimated e.g. 
based on physiological data about the effort for eye and 
head movements (Gore et al. 2009) or by computing salien-
cy maps (Itti & Koch 2001), the determination of the 
knowledge-based expectancy and value coefficients often 
depend on data gained by domain experts for a specific 
application use case.  

SEEV model variants, considering some or all of the four 
factors, have been used to model and predict attention allo-
cations for a wide variety of tasks in various domains: For 
instance in aeronautics, to predict monitoring while taxiing 
on ground (Wickens et al. 2008), or the influence of specific 
cockpit instruments (Goodman et al. 2003) on monitoring 
behavior. In the automotive domain the model was applied 
to evaluate drivers’ monitoring behavior while approaching 
intersections (Bos et al. 2015) and also to evaluate the influ-
ence of secondary tasks (Wortelen et al. 2013). Recent stud-
ies also demonstrate modeling efforts ending with valid 
predictions for nurses’ experience level when assisting in an 
operation theater in a hospital (Koh et al. 2011). All SEEV 
model related studies we are aware of, report moderate up to 
very high correlations (0.6< R <0.97) between eye tracking 
studies and the model predictions.  

Improving Input Quality  
The broad majority of the studies above applied the “least 
integer ordinal value” heuristic, which estimates parameter 
values by letting experts systematically compare AOIs be-
tween conditions. A recent approach applies the analytic 
hierarchy process technique for quantifying the informa-
tional importance (Ha & Seong 2014).  

The results of those methods, the relevant concrete pa-
rameter values are stated in most of the studies above and 
predictions therefore can be reproduced, but only one study 
we found (Koh et al. 2011) reported insights about the 
amount of experts, their background and prior knowledge, 
and the method applied to agree on the model input parame-
ter values. If the attention model is created for instance by 
only one HF expert, errors made by this HF expert can have 
a huge impact on the predictions. If the parameter estima-
tion is a result of a discussion of several experts, quiet voic-
es can be missed easily. Finally, if instead several experts 
are individually applying a method, the often observed eval-
uator effect might become evident (Hertzum & Jacobsen 
2001).  

We use a software tool, the Human Efficiency Evaluator 
(HEE), for input data gathering. We believe that using a 
well-structured and tool supported process for input data 
gathering improves documentation and reproducibility of 
the input data gathering. Prior studies have shown that the 
tool can be applied in parallel sessions and with very little 
training by domain experts for visual attention modeling 
(Feuerstack & Wortelen 2016). Based on a preset set of 
operator tasks to consider and images of HMI design vari-
ants embedded in their environment, the tool guides the 

domain experts through four major steps: (1) the identifica-
tion of areas of interest (AOI) relevant for the operator tasks 
(see Figure 1 for a screenshot), (2) the determination of 
expectancy, which is performed by ordering the AOIs ac-
cording to the expected frequency of information events, (3) 
ordering the importance of the operator tasks, and finally, 
(4) the specification of relevance of each AOI for the opera-
tor tasks. The least integer ordinal value heuristic is used to 
calculate numeric parameters from the orders defined in step 
(3) and (4). In (Feuerstack & Wortelen 2017) we observed a 
high variance in the data we collected from the domain 
experts, and interestingly also from the HF experts that we 
evaluated in a separate session. While variance between 
experts was also observed in earlier studies e.g. in usability 
evaluation (Hertzum & Jacobsen 2001) it has not been con-
sidered to be relevant for model-based attention prediction 
to the best of our knowledge. The observed variance seems 
to be capturing well the diversity that people show in gen-
eral when asked to give estimates. First studies indicate 
(Feuerstack & Wortelen 2016, Feuerstack & Wortelen 
2017) that the diversity prediction theorem (also called 
Wisdom of the Crowd (Surowiecki 2004)) can be applied 
also for attention prediction modeling with the HEE: By 
averaging individual model predictions, individual predic-
tion errors can be eliminated and high correlations with 
measured eye-tracking data have been observed (Feuerstack 
& Wortelen 2017). 

To gather expert data the tool requires images represent-
ing a situation (e.g. a critical traffic situation) for that the 
operators’ (i.e. drivers’) visual attention distribution is then 
modeled. The approach depends on such images to stimulate 
the capability of the experts to mentally put themselves into 
this concrete situation (e.g. one specific left lane change 
situation) and to anticipate all possible situations that could 
occur (while performing a lane change). While looking at 
data from a previous study (Feuerstack & Wortelen 2017), 
we suspected that the models created by the subjects might 
be affected by the images that were selected to be repre-
sentative for a specific situation. Therefore, we investigate 
how the selection of images representing situations for visu-
al attention modeling impacts the identification of AOIs (i.e. 
where one looks at) by the subjects and how using videos 
instead of images might reduce potential biases. For an 
experiment we formulate the following hypotheses:  

 
H1: “Experts mark bigger AOIs for information that is mov-
ing relative to the position of the human operator if videos 
are used to present a driving situation in several variations 
compared to using static images.” 
 
The location of information that is not fixed relative to the 
operator is moving in a video, while it has a fixed position 
in an image. Therefore it is hypothesized that participants 
only mark boundaries of information at a single position 
when using images instead of marking larger areas when 
using videos. 
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H2: “The choice between video and image does not affect 
the expectancy and value parameters of the SEEV model.”  
 
Although we assume that using videos to represent situa-
tions has an effect on the sizes of AOIs compared to using 
static images, we see no reason, why it should affect the 
modelling process for expectancy and value parameters of 
the SEEV model. 
 
H3: “More AOIs are marked using looping videos of a situa-
tion compared to static images.” 
 
In previous studies (Feuerstack & Wortelen 2016, Feu-
erstack & Wortelen 2017) we found high individual differ-
ences in how many and what kind of AOIs were marked. 
We assume that the static image is a reason for this vari-
ance. Some AOIs might not be marked by every subject, 
because the dynamics of the situation are not visible in the 
static image. Thus, they might fail to identify all areas were 
information shows up. In contrast, the video shows the dy-
namics of the situation. Thus we assume that more AOIs are 
marked using videos. 

Experiment 
We conducted an experiment and asked subjects to model 
the distribution of attention for different phases of an over-
taking maneuver using the Human Efficiency Evaluator 
(HEE). We tested two conditions in a between subject de-
sign with two groups of subjects. For some subjects the 
driving situations were represented using videos (V condi-
tion) and for some using static images (I condition). 

Participants 
40 licensed car-drivers were recruited by public announce-
ments in the university and were required to be licensed for 
at least 3 years (mean: 8.05 median: 7.0), have a minimum 
driving experience of 3000 km per year (mean: 11450 medi-
an: 8000) and received an expense allowance of 10 EUR/h.  
23 women and 17 men participated in the study, aged be-
tween 20 - 40 years (avg: 25.175 median: 24). 

Procedure 
The experiment was carried out in groups of 4 to 8 subjects 
for each session and was done in a computer lab in that 
every subject had a separate PC workplace with two 
screens. In total we had 20 randomly assigned subjects for 
each group and participants of both groups were mixed 
within the sessions.  

A video-tutorial, a scripted subject introduction and a 
written exercise sheet have been used to reduce potential 
bias by the instructors. Subjects were allowed to ask ques-
tions, which were transcribed in the observation records. 
The subjects had to start with watching the tutorial video 
first, which introduced them to the tool and its implemented 
attention modelling process by a supervision example of a 
football game. The tutorial video was identical for both 
groups, with the only exception that for one group the foot-

ball situations were displayed as static images and for the 
other group looping videos of several variances of the same 
football situation (a corner kick) were used. After the tutori-
al were introduced to an overtaking scenario consisting of 
three phases: (1) merging into left lane, (2) overtaking, and 
(3) merging into right lane. All subjects were asked to iden-
tify all areas of interest for each phase that they assume are 
relevant for three given tasks as a car driver: (1) Respect 
speed limit, (2) Overtake slower vehicles, and (3) Control 
lateral position. Figure 1 depicts the main screen of the HEE 
that the subjects used to identify the areas of interest. In the 
video condition the videos started automatically after start-
ing the tool but could be paused by the participants. 

After the experiment the two authors and a co-worker in-
dependently identified classes of AOIs based on the 1155 
AOIs marked by all subjects. In a group discussion we 
agreed on 37 classes of AOIs. Subjects used for their models 
different levels of abstraction. For example, some marked 
the entire dashboard as an AOI, while others differentiated 
between speedometer, revolution counter and the blinking 
arrow of the direction indicator. We reflected this by organ-
izing the AOI classes in a hierarchy shown in Figure 2. 
Afterwards each of the three persons independently classi-
fied all 1155 AOIs with a substantial level of agreement 
(Fleiss’ κ = 0.83). 

Results and Discussion 

Hypothesis H1 
To test hypothesis H1 we differentiate between AOIs that 
have a fixed position relative to the head of the driver (AOI 
classes with white boxes in Figure 2), and those that move 
relative to the head of the driver (AOI classes with gray 
boxes in Figure 2). As expressed in H1, we only expected an 
effect for moving information sources.  

For each AOI class we took all AOIs belonging to the 
class, including subclasses and calculated the mean size of 
the information sources in square pixels. 

We did this separately for each condition V and I. The re-
sults are plotted in Figure 3. The red line is a straight line 

 
Figure 1: Areas of Interest (AOIs) identification with the 

HEE. 
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through the origin with slope 1. For each AOI class the 
mean AOI size in the V condition is plotted against the 
mean AOI size in the I condition. According to the H2, 
AOIs with a fixed position  should have similar sizes in both 
conditions and thus should be located close to the red line 
(green data points in Figure 3), while moving AOIs should 
be plotted above the line (blue data points). The sample 
sizes for all the AOI classes differ, because some AOI clas-
ses were marked very often by participants, while others are 
rarely marked. The size of data points in Figure 3 is propor-
tional to the minimum of the sample size of the V and I 
conditions (nMin). The Figure seems to support our hypothe-
sis. The two green outliers at (20K, 60K) have a sample size 
of 1. 

For all moving AOI classes with nMin > 10, we did Welch 
two sample t tests with unbalanced sample sizes, to test if 
the differences are significant. Table 1 shows the p values 
after Holm-Bonferroni correction for 8 AOI classes with 
nMin > 10. In 4 of the six classes results are significant.  

 
 

 

 

 

 

 

 

 

 

Table 1: Results of the t-tests for differences in AOI sizes 
between I and V condition for AOI classes with more than 

10 AOIs in each condition. 

AOI class p 
Frontal view 0.001 
Traffic ahead 0.085 
Left lane close traffic 0.116 
Right lane close traffic 0.003 
Right lane traffic a bit ahead 0.011 
Traffic signs area right 0.001 

Figure 4 illustrates the effect using the AOI class “Traffic 
signs area right” as an example. The top row shows the 
AOIs marked by subjects of the image group. It mostly 
shows small areas that just cover the traffic sign in the im-
age, while the areas in the bottom row are from the video 
condition, were subjects marked the entire region where the 
traffic sign could be visible. It can also be seen, that partici-
pants only mark the information, if it is visible. In the sec-
ond phase (overtaking) no traffic sign was visible in the 
image. In this phase only one subject created an AOI in the 
area were traffic signs are typically perceived. 

Hypothesis H2 
For testing H2, that there is only an effect on the sizes of 
AOIs but not on the parameters of the SEEV model, we 
conducted equivalence tests for these parameters. We used 
the two one-sided test (TOST) procedure (Schuirmann 
1987) to test for equivalence of the parameters between the 
image and video conditions. For the procedure a margin δ 
for the difference of the means of the parameters between V 
and I conditions needs to be defined (-ߜ < തതതതܯ − ூതതതതܯ <  ,(ߜ 
for which we consider the parameters as equal. [-δ, δ] is the 
equivalence interval. 

Parameters were operationalized using the lowest ordinal 
heuristic (Wickens et al. 2001). Therefore, the minimum 
difference between parameters from one modeler is 1. We 
chose to express the margin δ for the mean of a SEEV pa-
rameter for a specific AOI class as a fraction of this minimal 
individual difference and consider the parameter distribu-

Figure 2: Hierarchy of AOI classes, showing different 
levels of abstraction. 

 
Figure 3. Comparison of average AOI sizes between V and 
I conditions for each AOI class. AOI classes with moving 
information are represented with blue data points, fixed 

AOIs with green data points. Size of data points 
proportional to sample size. Red line is line through the 
origin with gradient 1. Blue data points above the line 

indicate that moving information is marked bigger in the 
video condition. 
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tions equivalent, if the means do not differ more than half of 
the minimal individual difference (0.5 = ߜ). The TOST 
shows equivalence for a chosen α-level, if the (1-2α)-
confidence interval is within the equivalence interval. For 
each AOI class we tested it separately for all three situa-
tions, because parameters differ between situations. Howev-
er, in several cases this resulted in very few data points for 
an AOI. We excluded AOIs with less than 6 data points.  

In Figure 5 all remaining AOIs are listed on the x-axis or-
dered by the size of the confidence interval. It shows the 
confidence intervals as red bars and the equivalence interval 
as blue area. It is easy to see, that we were not able to show 
parameter equivalence for even a single AOI. For most 
AOIs the difference of the means is well within the equiva-
lence interval, but the boundaries of the confidence intervals 
are not. Because we did this test separately for each AOI 
and each driving situation, the limited number of data points 
resulted in large confidence intervals and prevents drawing 
a clear conclusion. 

Hypothesis H3: 
For each participant the identified AOIs for each driving 
phase were counted resulting in 60=20 × 3 counts. An inde-
pendent-samples t-test was conducted to compare the counts 
between video and image condition. There was not a signif-
icant difference in the numbers of identified information 
sources for video (M=6.53, SD=2.13) and image (M=6.23, 
SD=2.70) conditions (t118=0.68, p=0.50). Subsequent t-tests 
for each situation alone also found no significant effect. 

This result was unexpected. We examined the data in 
more detail. As we expected, information that is not visible 
in the image, but is sometimes visible in the video (e.g., 
indicator lights or road signs) is marked more often in the 
video compared to the image condition. The opposite case 
did not occur (information visible in the video, but not in the 
image). However, we identified another group of AOIs that 
are visible in the image but only sometimes in the video. 
This group produces the opposite effect. These AOIs were 

 
Figure 4: Subjects identification of traffic signs based on static images (top row) and on looping videos (bottom row) 

 
Figure 5. Visualization  of the TOST results. Red bars are 
the 90% confidence intervals. Blue area is the equivalence 

interval. 
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marked more often in the image compared to the video 
condition. A t-test showed, that the difference in the effect 
was significant (p=0.03) between both groups of AOIs 1: 
visible in image, but only sometimes in the video, and 2: not 
visible in image, but at least sometimes visible in video.  

Although, this is just a post-hoc hypothesis, it indicates, 
that the choice between using videos or images and select-
ing what exactly is displayed has an effect on the models 
generated by the users. It therefore needs careful considera-
tion. 

Conclusion 
Exemplary situations to stimulate monitoring behavior 
modeling need to be carefully chosen. One has to distin-
guish between areas of information with fixed visual bor-
ders (e.g. side mirrors), areas without fixed visual borders 
but fixed location (e.g. road ahead) from the monitoring 
person’s perspective, and those with moving location (e.g. 
traffic signs). Specifically the AOI identification of AOIs 
with moving locations benefits from using videos instead of 
images.  
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Abstract 

A modeling approach addressing visual search in an array of 
items of differing similarity is introduced. The model is able to 
capture the effects found in a study that varies target-distractor 
similarity (low vs. high), distractor-distractor similarity (low 
vs. high) of icons, target presence (present vs. absent) and the 
set size (8, 16 or 24 icons). To be able to simulate human visual 
search in such a task with original ACT-R mechanisms we 
implemented a hybrid search strategy that combines parallel 
and serial search. The presented model can provide useful 
insight for researchers interested in modeling tasks containing 
visual icon search. 

Keywords: visual search; similarity; ACT-R; cognitive 
modeling. 

Introduction 

Visual search is a general requirement for everyday tasks. 

Especially for user interfaces it is crucial to find the right 

icon/button/menu item quickly to proceed with the task and 

to reach the actual goal. The challenge is to find the target 

item amongst several, often similar distractor items. 

Performance in such tasks changes with the number of items 

on screen. Two search paradigms are known, determining 

whether the number of items influences search time or not. In 

the case that the target is similar to other items, search time 

typically increases roughly linearly with the set size (e.g. 

Wolfe, 1994). Here serial search takes place because the 

person has to actively attend one item after the other in a 

serial manner.  

In case the searched item is distinctive from the other items 

(a yellow item between blue items) the subjective feeling is 

that the item literally pops out from its surroundings. Here, 

reaction time will not differ too much between set sizes – a 

phenomenon called the “pop-out effect”. This parallel 

search relies on preattentive processes that take place before 

attention is actively drawn to specific items. Whenever a 

single visual basic feature (such as color or form) 

differentiates the target from other items this quick process 

can occur. 

The interesting case is the overlap between those two pure 

paradigms, whenever a heterogeneous field of items has to be 

searched. 

Our aim is on the one hand to understand how people cope 

with such search demands and what kind of strategies they 

use. On the other hand we want to model such search 

behavior to be able to predict the usability and search time of 

interfaces. 

The cognitive architecture ACT-R (Anderson et al., 2004, 

Anderson, 2007) offers a visual module that is able to address 

both search paradigms and also a module for motor output to 

enable realistic predictions about reaction times in visual 

search tasks. The visual module has two subsystems, the 

where system and what system. The where system simulates 

preattentive processes and relies on well accepted theoretical 

concepts (Wolfe, 1994; Treisman & Gelade, 1980). Each 

visual item has features such as type (text, or oval for a button 

or others), color or width. It is possible to search for items 

with a specific feature. As a response to such a search request 

a visual location of such an item is returned. In the next step 

the visual attention can be directed to this location. The first 

process needs no time, the second process does need time. A 

shift of visual attention takes 135ms - 50ms for the 

production to fire that elicits the request of the shift and 85ms 

for the shift itself.                                    

But how is visual search executed that is neither purely 

serial nor parallel in nature? Do people use strategies to find 

their target item quicker within larger distractor sets, and does 

an inhomogeneous distractor set regarding similar features 

(e.g. Duncan & Humphreys, 1989) further influence visual 

search apart from the above mentioned mechanisms? 

The main goal of the paper is to explore the possibilities of 

accurately modeling visual search in environments with 

objects of differing similarity in the cognitive architecture 

ACT-R. 

A number of ACT-R models exist that address visual 

search with different variations (Fleetwood & Byrne, 2006; 

Everett & Byrne, 2004). Fleetwood and Byrne manipulated 

set size and quality of icons in a computer-based target 

identification task. Icon quality was realized by the level of 

distinctiveness and complexity of icons. Good quality icons 

were easily distinguishable from others (on a preattentive 

level). Evidence in the eye tracking data showed that users 

were able to preattentively discriminate subsets of visual 

objects in conjunction search tasks, but here the number of 

similar items were held constant. Fleetwood and Byrne built 

two ACT-R models to simulate experimental results and 

managed to achieve a good fit.  

There are also a number of ACT-R modules that aim at a 

more fine-grained modeling of certain aspects of visual 

cognition. The EMMA-module (Eye Movements and 

Movements of Attention; Salvucci, 2001) attempts to better 

model the intricate relationship between eye movements and  

The cognitive processes that closely interact with them, 

while the PAAV module (Nyamsuren & Taatgen, 2012) 

allows for the incorporation of bottom-up processes. Our 

model, however, does not make use of any specific bottom 

up-processes of visual search. Our rational for that is two-

fold. On the one hand, owing to the specific structure of the 

experiment, top-down search of the target item is generally 

encouraged and then reinforced through practice. 
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On the other hand, more importantly even, we are 

interested in the possibility to model visual search with the 

core ACT-R mechanisms. While a very fine grained 

modeling of visual processes has its place, for most task 

models - especially if they are not primarily focused on the 

visual aspect of the task – it may be much more realistic and 

efficient to use a simple model that captures the general 

behavior reasonably well.  

To that end we took an experiment conducted by Trapp & 

Wienrich (2017) that looks at visual item search 

independence of four factors: Target-Distractor similarity 

(TDS), similarity between distractors (DDS), the presence of 

a target (target presence) and the overall amount of icons 

present (set size). The experiment is particularly well suited 

for modeling attempts. It demands the active consideration of 

both the absolute and relative properties of visual icons such 

as location, color and form - and therefore tests ACT-R’s 

modeling capabilities in all of these areas, as well. The 

variation of set sizes also allows for the isolation of invariable 

mechanisms and those that are dependent on the size of the 

visual search area. 

After presenting the original experiment and its main 

findings the modeling approach will be introduced. We will 

first describe the basic model in ACT-R and then move into 

specific modifications that allowed the final model to capture 

the experimental results well. To be maximally instructive to 

future modelers of similar visual mechanisms, we will also 

shortly discuss several modeling dead ends. 

Experiment 

The two main independent factors in the experiment by 

Trapp & Wienrich were Target-Distractor similarity (TDS; 

low vs. high) and Distractor-Distractor similarity (low vs. 

high) (see Figure 1). Similarity was realized by the color of 

the icons. Two further independent factors, target presence 

(present vs. absent) and the set size (8, 16 or 24 icons) were 

completely crossed with the similarities, resulting in a 

2x2x2x3-factorial setup and a total of 24 experimental  

 

conditions. Each participant conducted 12 trials of each 

condition (for a total of 288 trials per participant), constantly 

switching between conditions in a fixed blocked fashion. The 

participants performed a visual search task on a 10” mobile 

touch device, in which they had to find a specific target icon 

within a set of distracting icons. 

Each trial was performed in the following manner: After 

the target icon was shown for two seconds, a fixation cross 

was presented in the center of the screen to ensure a 

standardized gaze point for all participants. After the fixation 

cross disappeared, a set of icons was shown. When the target 

icon was present in the set, the participants had to find and 

select the target icon as fast as possible. Whenever there was 

no target, they had to select a specific button at the bottom of 

the screen to indicate the absence of the target icon. 

Subsequently, they received feedback on whether their 

answer was true or false. The reaction time was recorded for 

each trial and served as a performance measurement. The 

experiment comprised 18 participants in total (11 male and 7 

female) aged between 18 to 30 years.  

Both main and interaction effects of TDS, DDS, set size 

and target presence were consistent with the experimenters’ 

predictions and previous findings. Their main findings were 

as follows (see also figure 3):  

1) The first two conditions (both low TDS) produced low 

reaction times that showed only a very slight increase with 

set size.  

2) The third condition (high TDS and low DDS) produced 

moderate reaction times and increased with set size.  

3) The fourth condition (high TDS and high DDS) 

produced high reaction times that increased strongly with set 

size. 

4) The absence of the target item increased reaction times 

only slightly and by a constant term in the first two 

conditions. In the third and fourth condition the difference 

strongly increased with set size. 

Figure 1: Experimental similarity conditions according to color. Target is the white cross on red ground. (for demonstration; not 

original icons used) 

            low TDS                                 low TDS                                high TDS                              high TDS 

            low DDS                                high DDS               low DDS       high DDS 

        1st condition                         2nd condition                       3rd condition    4thcondition                          
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Model 

In order to capture these effects first a basic model in ACT-

R was created in a way that required the fewest assumptions 

while still being able to successfully solve the task in all 

conditions. Instead of icons the model interacted with oval-

objects in the Lisp-GUI with corresponding colors. Instead of 

the graphic on the icon, text codes were used simulating the 

visual feature that requires attention shifts. Both this basic 

and the later, modified model were originally created as part 

of a student project. 

Basic Model 

At the beginning of each trial, the model starts by encoding 

and memorizing the target icon in short term working 

memory (imaginal buffer). When the fixation cross appears, 

the visual focus is set on it. Starting with the appearance of 

the icons the model uses a search routine to scan the graphic 

user interface (GUI) for the target. Using preattentive 

perception via the where system, it starts a visual-location 

request for the target color. Its visual attention is then directed 

to such an item location in order to encode it (text code or 

icon graphic). The current icon and the target icon (stored in 

working memory) are compared. Whenever the two items 

match, the icon is selected. If they do not match, the next item 

with the target color is picked out and the process repeats 

until all items with the target color have been attended. If 

there is no unattended item left, the “not present”-icon at the 

bottom screen is selected. 

While this search routine could plausibly simulate human 

behavior, this first model had several shortcomings. Most 

problematically, almost all model behavior was longer than 

the participants’. This difference was most pronounced in 

conditions 3 and 4 where many distractor items match the 

target color and thus the “naive” model had to spend a large 

amount of time on time-costly fixations of the what-system. 

An additional problem was the fact that the model produced 

shorter reaction times with no target present (compared to the 

same condition with target present) in the first two 

conditions. This was mainly due to the additional visual 

fixation on the target when the target was present. 

Model Changes 

To increase the speed, while keeping the model psycho-

physiologically plausible, we realized three adjustments: The 

first adjustment was to move the starting position of the 

cursor to the center of the screen, assuming that most 

participants would keep the finger in a click-ready position 

over the display to be able to react faster. Secondly, as soon 

as the where-system returns a new visual location, two 

processes start in parallel. While the visual attention is drawn 

to the location, the manual system prepares to start moving 

the finger towards the new candidate item. This change was 

implemented to reflect a routine task handling with subjects 

constantly anticipating and preparing the next step of the task. 

Thirdly, while the movement towards an icon takes place, the 

model already starts to prepare the next motor movement (the 

pressing of the icon). ACT-R allows for this kind of parallel 

working of the motor module (here specifically via the 

“preparation: free” command) as long as the different 

processes are in different stages of the preparation-initiation-

execution sequence that makes up all motor processes. 

Psychologically, this change can be justified by the 

assumption that most participants are well-versed in the 

action of pressing an icon on a touch screen. A procedural 

acquisition of a combined movement by the participants that 

does not require several separate preparation and initiation 

phases is therefore plausible.  

Hybrid search strategy 

The most important change, however, was the remodeling 

of the general search in a way that it required fewer 

attentional fixations, driving down reaction times especially 

in conditions 3 and 4. Since the fixation of every candidate 

item (i.e. items of the same color as the target item) was not 

reconcilable with observed reaction times, the next logical 

step was to use a strategy that searches an entire cluster of 

candidate items with one fixation. The new search algorithm 

(figure 2) thus consists of three main steps (3 productions in 

ACT-R).  

1) A preattentive request (where system) is issued for a 

previously unattended location with the target color and the 

lowest x and y values (light blue arrow).  

2) If the icon does not match the target icon, the model 

scans the entire row for the target comparing the “width” of 

the text (black arrow). Width is processed preattentively, and 

the target had a unique text width, allowing it to be a search 

criterion. Psychologically, this much faster search assumes 

that a visual scan within a short row (here 4 items) allows the 

shape of the target item to visually “pop out” as well (an 

assumption that we globally allowed only for colors). When 

the icon is located in the row, it can be found directly.  

3) In case of finding nothing, the model jumps to the 

nearest oval with the correct color below the current row (red 

arrow). 

 
Figure 2: Core visual search algorithm of the final model. 

 

The aggregate of these adjustments allows our model not only 

to meet the general level of reaction time of the empirical 

data. 
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The model now also produced reaction times that are 

longer in conditions with no target present without any 

further assumptions.  

It should be noted that in this paper, our goal was to 

recreate reaction times rather than the exact visual paths or 

fixation patterns. In fact, all models that assume that  

1) exactly one fixation per row is needed to scan all 

candidate items and 

2) search is conducted in a structured manner from top to 

bottom   

make the same temporal predictions. 

Model Specifications 

In the models, no ACT-R parameters were used. The 

declarative memory consists of a goal chunk and a chunk that 

stores color, text and width of the current target item. The 

final model and the GUI are published online at 

https://depositonce.tu-berlin.de/handle/11303/338. To obtain 

the simulation results, the model was run 1000 times in each 

condition. 

Results and Model Fit 

The following table shows statistical results of the fit. The 

overall RMSSD (a measure for the absolute distance between 

model and experimental data; Schunn & Wallach, 2005) of 

the model is 1.74.  

   

 RMSE RMSSD Correlation  

Set size 24 102.34 ms 1.34 0.99 

Set size 16 172.12 ms 1.20 0.98 

Set size 8 179.62 ms 2.42 0.94 

Table 1: Statistical model fit (RMSE: absolute fit; RMSSD:  

absolute fit standardized by the experimental data’s standard 

deviation). 

 

 

Comparing the empirical data and the model for the set size 

of 24 icons indicates a good fit over all conditions (figure 3). 

It captures well the relative trend in all 3 set sizes, both 

concerning the similarity conditions and the target presence.  

The absolute reaction times match reasonably well, 

although the fit is best for large set sizes. Almost all of the 

difference between model and experiment results from 

conditions 3 and 4 when the target is not present. Especially 

in condition 4 the difference is not within the standard 

deviation anymore and therefore has a great effect on the 

RMSSD.  

The reaction times reflect the fact that the model is using 

both the serial and the parallel visual search. While in 

condition 1 and 2 the target pops out immediately, the model 

has to use a mixture between parallel and serial search for 

finding the target fast enough in the other conditions. Despite 

the fit getting a little less precise in the 3rd and 4th condition 

the model’s searching algorithm seems to be a good 

approximation to the human visual search behavior. 

Discussion 

We introduced two modeling approaches. The first one was 

a simple, reasonable model to address visual search in a task 

that includes different similarities between target and 

distractors. This basic model did not capture well the effects 

found in the experiment. With three adjustments and a new 

way to describe a mixture of parallel and serial search the new 

model could capture the empirical data well. The general 

mechanism used in the model might be helpful to researchers 

who model visual search in applied tasks, especially for tasks 

where time is sparse and people try to be as efficient as 

possible. 

To better judge the quality of the current model, it would 

be useful to compare it to a model that uses both EMMA- and 

PAAV-module and thus implements more sophisticated 

mechanisms including those that deal with bottom-up visual 

processing. Another factor that could also be included in 

future models is the influence of expectations on visual 

Figure 3: Empirical and Model reaction times for all four principal experimental conditions. Each condition is in turn divided 

by target present/ not present. 
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search patterns, as described in Lindner & Russwinkel 

(2016).  

Furthermore this account is a theoretical concept that 

should be tested in subsequent experiments. To test the 

assumption of the pop out of items on one row, a variation of 

the current experiment could test participants with the screen 

presented vertically and horizontally. Another variation 

could address the question of a possible strategy change when 

the number of distractors similar to the target increases. This 

can be done by presenting conditions in which only a small 

number of distractors is clearly different from the target. All 

future experiments should involve eye-tracking to better 

track the attentional focus of participants. This in turn should 

allow for better model construction and evaluation. 

Furthermore, we would like to test this visual search concept 

on our model of learning and unlearning of app usage 

(Prezenski & Russwinkel, 2016).  
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Abstract
This paper describes an experiment and fuzzy set models in
the domain of linguistic labels for simple spatial relationships:
for example, that one object is “in front of” or “to the right
of” another. Input to the models was generated by robot sen-
sors (camera and distance sensors), from a viewer perspective
on different configurations of two objects. Performance of the
models is is qualitatively similar to human judgments; perfor-
mance is also quantitatively similar to that of a model working
from an environmental bird’s-eye view. Such models are part
of a robot’s interpretation of the context of human activity.
Keywords: spatial relationships; fuzzy sets; cognitive robotics

Introduction
As we attempt to create a new generation of automated
helpers to solve problems in the military, elder assistance,
transportation, and other areas, we increasingly find that we
need robots that can interact naturally with humans and that
can move through environments designed for humans. A crit-
ical challenge for such robots is the use of context.

Context can help a robot to impose structure on informa-
tion available to it, in a top-down manner. Some kind of con-
textual information can be provided by background knowl-
edge or experience of common human activities. For exam-
ple, “writing a paper” may be associated with scenes such as
a “computer lab” or a library, or with object clusters such as
a table and chair (Fields, Lennon, Martin, & Lebiere, 2017).

Context is also provided by information about human be-
havior and performance, which can be exploited in research
that integrates cognitive modeling and robotics. Our lab has
begun to explore the combination of language comprehension
models and information-based search; some of our current re-
search deals with spatial relationships.

Consider the diagram of two objects in Figure 1, one la-
beled L (for “landmark”) and the other T (for “trajector”).
The landmark sets the context for the relationship, while the
trajector occupies a position—a place in the relationship—
with respect to the landmark. If this diagram were a bird’s-
eye view of a room, a person in the position of observer O1
would probably say that “T is to the right of L.” Would the
person also say that “L is in front of T ” or that “T is in back
of [or behind] L”? Spatial relationships that can be easily di-
agrammed may be ambiguous when described in language.

The ways that people conceptualize space (and action)
have long been a subject of study in psychology. Applying

research findings to robot behavior is a more recent devel-
opment. There are clear advantages in human-robot inter-
action for a robot that incorporates the ability to take as in-
put, generate as output, or reason about expressions of spatial
relationships (Trafton & Harrison, 2011; Guadarrama et al.,
2013; Tellex et al., 2011). The work of Regier and Carlson
(2001) and others hints at another possibility: a model of hu-
man interpretations of spatial relationships may provide in-
formation to a robot about what is of interest to individuals
or to people in general. For a simple example, people typi-
cally attend to what is in front of them; in a classroom full of
desks and chairs, it is straightforward to infer the general area
a teacher will occupy. We even find spatial directions used
in metaphorical language concerning attention: “it’s right in
front of you” indicates that you should notice whatever it is.

To explore such issues, it will be useful to have a reliable
way for a robot to associate spatial relationships with labels
such as left, right, in front of, and in back of, in the same way
that humans do. While there are obvious, canonical examples
of such relationships, not all fall crisply into one category
or another. Further, robots must deal with noisy sensors and
motor movements, which might plausibly interfere with their
categorizations of objects in the environment.

In the remainder of this paper we give a brief overview
of work on linguistic labels for spatial relationships. We de-
scribe an experiment in which participants made judgments
about spatial relationships between two objects. We then de-
scribe three a priori models, from the fuzzy systems liter-
ature (Keller & Wang, 1995), that allow a robot to make the
same viewer-perspective judgments about the spatial relation-
ships. We compare their performance to the human data and
find qualitatively similar model predictions.

T

L

O1

Figure 1: Object/observer relationships
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Related work
The literature related to representation, reasoning, and com-
munication concerning spatial relationships is enormous.
Mechanisms underlying spatial representation and reasoning
have been explored in some depth in the cognitive modeling
literature (Harrison & Schunn, 2003; Gunzelmann & Lyon,
2006; Trafton & Harrison, 2011); cognitive models also en-
compass the language of spatial relationships (Ball, 2015).
The research described in this paper is much narrower, how-
ever, focusing on spatial relationships that can be expressed
in linguistic terms (e.g., left, right, above, below, in front of,
and behind or in back of ) and the extent to which they can be
grounded in the perception (of a human or a robot agent).

Regier and Carlson (2001)’s Attentional Vector-Sum
(AVS) model is widely accepted as the best model of how
a set of spatial expressions can be grounded in perception.
Informally, for the above relationship, an attentional beam
is conceptualized as extending from a trajector object to a
landmark object. Attention is strongest at the point on the
landmark directly below the trajector, and weaker at other
points on the landmark as distance from this point increases;
the drop-off is a free parameter in the model. A distribution
of vectors is identified, originating at different points on the
landmark and directed toward the trajector, the magnitude of
each determined by attention. The sum of these vectors is
compared with a vertical line, and the deviation determines
the extent to which the trajector is above the landmark.

Regier and Carlson (2001) compare the AVS model with
others, including a Bounding Box (BB) model and a Prox-
imal and Center-of-Mass (PC) model, both of which it out-
performs. For the BB model and the above relationship, “a
trajector object is above a landmark object if it is higher than
the highest point of the landmark and between its rightmost
and leftmost points” (Regier & Carlson, 2001). For the PC
model, consider a vector from the center of a landmark to the
center of a trajector. As this vector deviates from the ver-
tical (roughly, 68◦ to 72◦) ratings of the above relationship
decrease linearly; further increases cause a much faster drop
off, to zero at 90◦ or greater. Proximity comes into play with
a line segment connecting the landmark and trajector at their
minimum distance; to the extent that this segment is aligned
with the center-of-mass vector, the above relationship holds.

Judgments about above generalize to comparable relation-
ships, including left, right, in front of, and so forth (Regier
& Carlson, 2001). For example, if we interpret the bottom
of the box in Figure 1 as being a horizontal surface, then we
could ask, “Is T above L?” and use the same PC model, re-
interpreted, to answer the question.

The AVS model and others have been used in computer
vision and robotics research, though they typically require
some adaptation. In most experiments on labeling spatial re-
lationships, a scene is presented in which the relationship of
interest is visible in a plane normal to the participant’s line
of sight. For example, consider rating the relationships left,
right, in front of, and in back of for two objects on the floor

Figure 2: Object configurations (red on the right)

in a room. A bird’s-eye view, along a normal to the plane of
the floor, would be a typical presentation, as in Tellex et al.
(2011, Figure 4), which we will call an orthogonal view. An
observer—such as a robot—inside the room with the objects,
however, would face a related but slightly different problem.
This viewer perspective, in which judgments are required for
relationships that are aligned with viewer’s line of sight, are
part of the experiment described in the next section.

Experiment
This experiment was intended to benchmark performance in
answering questions about spatial relationships. Because our
eventual goal is a robot that can reproduce human judgment
of specific spatial relationships, by reference to a model, the
raw data was provided by camera images from a robot: a
LEGO Mindstorms NXT robot with customized sensors, in-
cluding a still camera.

Two stacks of blocks were used for the experiment, as
shown in Figure 2. The stack of square red blocks was 10
cm on each side. The oblong stack of blue blocks was 10 cm
wide and 30 cm long. Both stacks were about 21 cm tall.

These two stacks were placed in different configurations as
follows. The blue stack was initially placed with its narrow
side facing the robot, and the red stack was placed to the right
and a few cm behind the blue stack, comparable to a config-
uration in Gapp (1995), in Figure 1b. The red stack was then
advanced in increments of 10 cm in a straight line towards the
robot. The advances were performed six times until the red
stack was about 10 cm in front of the blue stack. After the
six advances the red stack was returned to its starting position
and the blue stack was rotated by a one-eighth turn. The pro-
cess was repeated. This continued until the blue stack was at
a right angle from its original position.

The robot, approximately 60 cm distant from the centroid
of the two stacks in the starting configuration, followed the
procedure in Figure 3 after each change in the configuration.
Thirty images were collected in total, at six different locations
of the red stack and five different rotations of the blue stack.
Figure 2 shows two images, the starting configuration on the
left and after five steps into the procedure on the right.

The images1 recorded during this procedure formed the ba-
sis of a survey. Twelve participants completed the survey,

1Images were used instead of a real environment for consistency
across experiment participants.
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Record compass reading
Record camera image
For target color in {RED, BLUE}

Identify object of target color
For target in {LEFT, CENTER, RIGHT}

CALC: Calculate rotation to center on target
Rotate
If within threshold

Record compass reading
Record distance reading

else go to step CALC

Figure 3: Measurement procedure

eight men and four women, ranging in age from 28 to 71. The
participants received no compensation for participation and
were not observed during the task. The sequence of images
was randomized; all participants saw the same ordering. For
each image, four statements were evaluated by participants,
on a scale of 0 to 10; for analysis, all values were linearly
transformed to a unit scale.

1. The red blocks are to the right of the blue blocks.

2. The red blocks are in front of the blue blocks.

3. The red blocks are in back of the blue blocks.

4. The blue blocks are to the left of the red blocks.

In other words, we have two independent variables in this
experiment. The variable Distance of the red stack to the
robot provides for different participant ratings concerning
whether the red stack is in front of, in back of, and even to the
right or left of the blue stack, in each location. The variable
Angle, for the rotation of the blue stack, provides a different
cross-section to the viewer as well as a different angle with
respect to the red stack.

Note that the experiment excludes the most “obvious” con-
figurations for Front and Back ratings—for example, with one
block directly in front of the other, from the position of the
camera. There is a sense in which the experiment tests “edge
cases” for spatial relationship judgments.

The three plots in Figure 4 show survey ratings for the
right, front, and back questions. Values for left are not shown,
being almost identical to right. Each group of six connected
dots shows the mean values, scaled from 0.0 to 1.0, the six
locations of the red stack, at decreasing Distance from the
robot’s camera. Five groups are shown, with a graphical icon
for each Angle value of the blue stack. Within each group,
the sequence shows the red stack moving foward in steps.

No significant effect on Right ratings or on Left ratings
was found. The mean values of Left and Right were above
0.9, over all trials, the median equal to 1.0. While a slight

Figure 4: Mean ratings of right, front, and back, with standard
error bars; gray blocks show rotation angle of blue stack

inverted U-shaped pattern is visible, we did not analyze the
data further.

An analysis of variance showed a significant overall ef-
fect of Distance and Angle on Front ratings, as expected
(F(5,4) = 25.790, p < 0.01). Distance alone had a signifi-
cant effect on Front (F(5,4) = 28.036, p < 0.01), but Angle
did not (F(5,4) = 0.034, n.s.); the interaction between Dis-
tance and Angle was significant (F(5,4) = 2.677, p < 0.01).

Similarly, ANOVA showed a significant overall effect of
Distance and Angle on Back ratings (F(5,4) = 18.973, p <
0.01). Distance alone had a significant effect on Back
(F(5,4) = 27.505, p < 0.01), but Angle did not (F(5,4) =
0.433, n.s.); the interaction between Distance and Angle was
significant (F(5,4) = 1.812, p < 0.05).

The general patterns are as expected: experiment partici-
pants were able to make plausible judgments about the spa-
tial relationships between the two stacks in different config-
urations, basing their judgments on the information provided
by the robot’s camera. There was no influence of the angle of
the blue stack, acting as a landmark in the experiment, though
the rotations acted to change the “overlap” with the trajector;
the lack of an effect is possibly due to the front view and the
limited depth information available in the images. Different
shapes are noticeable in the Front and Back ratings, with the
Front ratings showing a slightly more pronounced curvature
with change in Distance.
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Modeling
Models such as AVS, PC, and BB have been adapted for
use in computer vision and robotics (Guadarrama et al.,
2013; Tellex et al., 2011), and new models have been de-
veloped Matsakis and Wendling (1999). In such work, how-
ever, the models are generally not evaluated directly or com-
pared with human performance, and the models may not take
a parameterized form with explicitly identified features, with
Gapp (1995) being an exception.2

Our work adopts vector-based methods to model the rat-
ings described in the previous section. Regier and Carlson’s
PC model is a possible candidate, but its four free parameters
make it difficult to adapt—specifically, changing to a viewer
perspective to evaluate relationships parallel to the viewer’s
line of sight. Instead, we evaluate three simpler models from
the computer vision literature due to Keller and Wang (1995).

These are fuzzy set models, which can deal with member-
ship grades in categorization. In a standard “crisp set” formu-
lation, a predicate is true or false; with a fuzzy set, a mem-
bership grade can be a value from 0 (not a member of the set)
to 1 (a member of the set). Thus, for example, in Figure 1, T
might have a membership grade of 0.8 for the categorization
“to the right of L;” it would be greater if it were closer to a
horizontal line extending through L. Fuzzy methods can do
more than assign a grade for a given label; with several la-
bels, they can be used for categorization, even in cases where
a given configuration fall into more than one category.

Keller and Wang’s Centroid method uses Equation 1 as the
membership function for the right function; analogous func-
tions are defined for left, front, and back. Let the centroid of
L be the origin in a Cartesian coordinate system; let θ be the
angle of a vector −→LT through the centroid of T . The func-
tion µright maps θ to a value between 0 and 1, representing the
degree to which T is to the right of L:

µright(θ) =


1 |θ|< a π

2

0 |θ|> π

2

π/2−|θ|
π/2(1−a) o.w.

(1)

In words, T is maximally to the right of L when θ is within
a small range above or below 0 radians (a π

2 , where a is a
free parameter, which we set to 0.05 as a default), along the
implicit x-axis in the landmark-based coordinate system. µright

decreases linearly as θ increases or decreases, reaching zero
when the center of L falls on or below zero on the x-axis.

Computing the centroids of objects is straightforward with
an orthogonal view, but this is more difficult for some re-
lationships from a viewer perspective. As described in the
measurement procedure in Figure 3, the robot identified three
points on each object in the scene, its left edge, center, and

2Indirect evaluation is carried out, however. Guadarrama et al.
(2013) evaluate overall measures of success for experiments with
a robot that incorporates a combined PC and BB model to interact
with configurations of multiple objects; Tellex et al. (2011) similarly
with an AVS model.

Figure 5: Distance and compass readings, bird’s-eye view

right edge; distances were measured to these points and a
centroid computed from the values. This gives the centroid
estimation for both objects a strong forward bias, though this
is partly alleviated for higher Angle values in cases where the
blue stack has been rotated.

The angle θ between the two stacks must be provided as
input to µright but cannot be measured directly; θ is computed,
based on the triangle in Figure 5. θ3, r1, and r2 are measured
directly by the robot, while θ1, θ2, and r3 are computed:

θ1 = cos−1
(

r2
2 + r3

2− r1
2

2r2r3

)
;θ2 = π−θ3−θ1, (2)

r3 =
√

r12 + r22−2r1r2 cosθ3. (3)

With measured or computed values for the triangle’s sides
and angles, plus the assumption that the robot’s camera is
midway between the two stacks, computing θ for different
directions is straightforward trigonometry.

Keller and Wang’s second method is Angle Aggregation,
which samples points from the landmark and trajector ob-
jects, computes angles for each pair of points, and aggre-
gates the angles (by a generalized mean operator) into a single
value for θ. With three sampled points on each object in the
experiment, a total of nine pairs of angles are considered.

The third method is the compatibility method, which we
implemented in variant form as a Histogram/Composition
method. Angles between the two objects are computed as
with Angle Aggregation, but instead of computing the mean
of the samples, the samples are binned into a histogram, with
normalized frequencies for the bins being treated as fuzzy set.
This set is composed with the fuzzy sets for right, left, front,
and back, to compute the membership grade in each category.
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Figure 6: Model predictions for right, front, and back

Model predictions are shown in Figure 6 for the survey data
for right, front, and back; as before, left is elided, being al-
most identical to right. The parameters of the models were
not tuned to fit the data.3 In these plots, Distance values re-
flect the ordering in which they were considered by the robot,
an inversion of the actual distance from the camera: 0 corre-
sponds to the red stack being farthest away from the robot’s
camera, i.e., behind the blue stack, with a Distance value 1
being closest to the camera and in front of the blue stack.
Predictions are aggregated by Distance value, in that Angle
had no effect on the spatial judgments.

The black lines show mean ratings from the survey, with

3For Keller and Wang’s models, a = 0.05. The AVS model used
parameters given by Regier and Carlson (2001, Table 1): λ = 1.0
(attentional field width); y-intercept = 1.007 and slope = −0.006
(alignment function); gain = 0.131 (top sigmoid).

Right Front Back
AVS 0.891, 0.068 0.046, 0.880 0.285, 0.925

R2 = 0.056 R2 = 0.813 R2 = 0.629

Angle 0.888, 0.083 0.139, 1.449 0.194, 0.946
R2 = 0.202 R2 = 0.812 R2 = 0.835

Centroid 0.887, 0.085 0.164, 1.453 0.193, 0.900
R2 = 0.282 R2 = 0.792 R2 = 0.850

Histogram 0.902, 0.051 0.151, 0.867 0.208, 0.797
R2 = 0.138 R2 = 0.698 R2 = 0.817

Table 1: Model fit statistics

error bars showing the standard error with respect to all par-
ticipant ratings per Distance value. The other colored lines
represent predictions of the Centroid, Angle Aggregation, and
Histogram/Composition fuzzy models. The fuzzy models are
not separately labeled in the Back plot; their values are al-
most indistinguishable. For reference, predictions of the AVS
model are shown as well. The AVS predictions were based
on a virtually constructed orthogonal diagram of each config-
uration and are given for comparison to a method with access
to a perspective not available to the other models.

Qualitatively, the fuzzy models are consistent with human
ratings, though they are more “conservative” in the sense of
assigning lower membership grades than the human partic-
ipants. This is in part due to the forward bias in the front
predictions—recall that reference points were identified with
the robot’s distance sensors, which detect the distance to the
front of each object.

The under-predictions of the AVS model for the mean Back
rating surprised us; we initially suspected design or imple-
mentation errors in the modeling code. Exploration of the
participants’ data led us to a different conclusion, however.

Leaving out Distance values of 5, the remaining conditions
are approximately symmetrical, front-to-back, in geometrical
terms. For example, at Distance 0, the front edge of the red
stack is aligned with the back edge of the blue stack, while
at Distance 4, the back of the red is aligned with the front of
the blue, as if reflected in a mirror (though rotation introduces
minor asymmetry). The AVS model produces consistent pre-
dictions for such symmetrical configurations.

Participant ratings did not show the same consistency be-
tween Front and Back ratings. For the symmetrical con-
figurations, Back ratings were higher than Front ratings by
about 0.2 on the unit scale. Further experimentation would
be needed to verify this bias. It is generally held that models
of spatial relationships such as these generalize across orien-
tations; our results suggest that the viewer’s perspective may
be a factor in the magnitude of ratings.

Table 1 shows how well the models fit the survey ratings,
following the approach of Regier and Carlson. Each entry is
the y-intercept and slope of a regression that uses the model’s
output to predict ratings; an R2 value is below each such entry.
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For example, we see that AVS gives the best fit for Front:
a regression line with a y-intercept of 0.046 and a slope of
0.880 gives the best prediction of survey ratings, with R2 =
0.813. The better the model, the closer the intercept is to zero
and the closer the slope is to 1.

Table 1 shows that of the fuzzy models, the Histogram
model has the best balance of intercept and slope for the front
relationship, though a lower R2. Angle Aggregation is the
best for the back relationship, though all the fuzzy models
are similar. All models perform poorly for right and left rela-
tionships, which is inevitable—Distance and Angle have no
predictive value on the participants’ ratings.

We tested the sensitivity of the modeling predictions by vir-
tually reconstructing each configuration and running the mod-
els on the “theoretical” values for θ1 . . .θ3 and r1 . . .r3. We
found no marked difference between the predictions based on
the sensor data and the theoretical data; data is not presented
for reasons of space.

To summarize, the fuzzy models’ predictions tend to un-
derestimate ratings in all categories of spatial relationships
that we tested. The predictions for front and back are of the
same shape as the human ratings with respect to relative dis-
tance from the viewer, however, which suggests that an ad-
ditional constant or linear factor could improve their perfor-
mance. Poor performance on right and left is partly due to this
underestimate; this does not account for the models’ system-
atic dependence on Distance, however. The AVS model was
used for comparison, based on a virtual bird’s-eye view. With
access to depth information about the stacks, the AVS model
outperformed the fuzzy models for the front relationship but
was considerably worse than the fuzzy models for the back
relationship, due to asymmetrical ratings by the experiment
participants. We leave these issues for future work.

Conclusion
The long-term thrust of this area of research is to give robots
a language of spatial relationships that are consistent with hu-
man understanding. This can facilitate human-robot interac-
tion and potentially improve a robot’s ability to interpret hu-
man activity or designed environments. Some of the work
cited in this paper goes much farther toward this goal than we
have here, and another direction for future work is to deter-
mine how best to integrate our results with theirs.

Our results are nevertheless informative. One of the chal-
lenges in determining spatial relationships is the uncertainty
of data in dealing with an egocentric view; another is in noisy
sensor data. A step toward this goal is to identify a technique
that gives results in line with human understanding. This pa-
per compared three fuzzy methods with human survey data to
find if any of the techniques performed acceptably against hu-
man perception. These techniques were developed for judg-
ments about orthogonal presentations and performed approx-
imately as expected from a viewer perspective.

Only four primitive spatial relationships were used in this
work; many more would need to be addressed in an effec-

tive vocabulary: near, far, surrounding, inside, outside, and so
forth. Another direction for future research is to determine the
minimum amount of information the robot must sense in the
environment before being able to make accurate predictions
about the spatial relationships. Our work used three points on
each object. With more points some of our models described
might have produced better predictions. The work presented
here compares relatively straightforward methods of deter-
mining spatial relationships given the current scene available.
But if the robot moves a new scene is presented and any in-
formation from previous scenes is not incorporated into the
current calculations of spatial relationships. This could play
a part in determining spatial relationships with human robot
interaction. A final interesting question is whether people use
only available information in the picture to determine the spa-
tial relationships between objects or whether they incorporate
background knowledge or previous experience.
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Abstract

Generating truly random sequences is hard. When participants
are engaged in a competitive game (e.g., Matching Pennies),
the sequences they generate are surprisingly more random
than when given explicit instructions to generate random
sequences (Rapoport and Budescu, 1992). To explore this
phenomenon, we formalized two probabilistic models of
Theory of Mind reasoning about subjective randomness. One
model (the Fair-Coin model) assumes participants predict
their opponents’ choices by implicitly assuming that their
opponents intend to generate binary sequences that simulate
the outcome of tossing a fair coin. The other model
(the Markov model) assumes participants believe that their
opponents intend to generate sequences that simulate the
outcome of a Markov process with transition probability
equal to 0.5. We find that Theory of Mind models of
both the Fair-Coin and the Markov definitions of subjective
randomness are able to characterize the calibrated subjective
randomness that occurs when participants are playing an
iterated competitive game (Matching Pennies), but the Markov
Model is better than the Fair-Coin Model in simulating
the situation where participants need to specify their choice
sequences in advance of the game. The current study suggests
that the calibrated subjective randomness in competitive
games can be explained by the online evaluation of sequence
randomness with Theory of Mind reasoning.
Keywords: subjective randomness; Theory of Mind; matching
pennies; probabilistic models

Introduction
People are relatively poor at generating random sequences
(Bakan, 1960). They produce “subjectively random”
sequences by switching between heads and tails, but they
switch too often (Lopes & Oden, 1987). However,
participants are able to generate sequences that are more
“truly random” when feedback is available (Neuringer,
1986), as in competitive games (Rapoport & Budescu,
1992). Many theories have been proposed to account
for participants’ failure to generate random sequences
(Griffiths & Tenenbaum, 2003; Hahn & Warren, 2009),
but the phenomenon of calibrated subjective randomness
in the context of feedback has received comparatively little
attention by formal models (however, see West and Lebiere
(2001); Lee, Conroy, McGreevy, and Barraclough (2004) for
some proposals). Here, we propose that calibrated subjective
randomness may result from basic Theory of Mind reasoning
about others’ models of subjective randomness.

The situation we will examine is the competitive game
Matching Pennies. In this game, two agents (the “Matcher”
and the “Nonmatcher”) each make a binary choice (e.g., 0
or 1) secretly. The Matcher wins if their choices are the
same and the Nonmatcher wins if their choices are different.
Mathematically, the optimal strategy is to choose the two
alternatives (0 or 1) with equal probability. Rapoport and

Budescu found that participants generated more truly random
sequences when playing in the Matching Pennies game.

To understand why feedback helps calibrate subjective
randomness, we must first understand the origin of subjective
randomness. Several researchers propose that subjective
randomness is the result of instructional biases (e.g., when
participants are instructed to generate random sequences,
they are encouraged to produce sequences that appear to be
orderless; Ayton, Hunt, & Wright, 1989). However, even
when participants are not explicitly given such instructions,
the nature of the task prompts participants to generate
sequences that are more “representative” of the output of a
random process (Kahneman & Tversky, 1974). Griffiths and
Tenenbaum formalized this idea into a probabilistic model of
subjective randomness (Griffiths & Tenenbaum, 2001).

Although these theories explain the nature of subjective
randomness, they provide no mechanistic explanation as to
why this bias is calibrated in the presence of feedback. In
the current investigation, we propose that Theory of Mind
reasoning can explain participants’ behavior in experimental
conditions both with and without feedback. The main
goal of this paper is to model and explain the data from
Rapoport and Budescu (1992). Below we first review the
relevant experiments and results. Next, we introduce two
computational models, and explore and compare the model
predictions in different experimental conditions. Finally, we
discuss the implications and limitations of our models.

Calibrated Subjective Randomness
Rapoport and Budescu (1992) ran a subjective randomness
experiment with three conditions. In the Dyad Condition,
participants were paired to form dyads; each dyad played
150 trials of Matching Pennies, generating a response on
each trial. The Single Condition was the same as the Dyad
condition except that the paired dyads were asked to specify
their choices in advance of the 150 rounds and were told that
the responses would be matched on a trial-by-trial basis to
determine the winner. In the Randomization Condition,
participants were instructed to generate a sequence of 150
random binary responses to simulate the outcome of tossing
an unbiased coin in a non-interactive context.

The key results are the patterns of sequential dependencies.
The distributions of sequences of length k (i.e., k-tuples; k =
2,3,4) were not uniform as expected under a “true” random
generating process. The authors calculated the frequencies of
k-tuples (e.g., 3-tuple [0 1 1], 4-tuple [0 0 0 0]), and found
that in the Randomization Condition, participants were more
likely to generate [0 1 0 1] and [1 0 1 0] than [0 0 0 0] and
[1 1 1 1]. They used two statistics to indicate the extent
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to which the distributions deviate from the outcome of a
truly random generating process: the mean absolute deviation
(MAD) from expectation and the standard deviation of the
observed proportions around their expectation (SD):

MAD =
2k

∑
j=1
|p j−1/2k|/2k,k = 2,3,4.

SD =
2k

∑
j=1

[(p j−1/2k)2/(2k−1)]1/2,k = 2,3,4.

Here p j stands for the probability of individual k-tuples.

Rapoport and Budescu (1992) found that MAD and SD
in the Randomization Condition were the largest, followed
by the Single Condition, and finally the Dyad Condition.
Participants deviated from what would be expected with truly
random sequences the most in the Randomization Condition
and the least in the Dyad Condition.

To model these results, we propose that in the Dyad
Condition, participants use their opponents’ previous choices
to predict their opponents’ choices in the current trial,
assuming that their opponents intend to generate sequences
that are “subjectively random”. They then generate
their responses accordingly (i.e., Matchers try to match,
Non-matchers try to mismatch). In addition, we posit that
participants also have a desire to have their own sequences be
subjectively random. In the Single Condition, participants
consider that their opponents know that they are likely to
generate subjectively random sequences and adjust their
choices accordingly (though without feedback). Finally, in
the Randomization Condition, participants simply generate
sequences that are subjectively random.

Note that one of the critical components in our model is
how participants define “subjective randomness”. Different
definitions or models of subjective randomness are possible.
In a Bayesian setting, the inference of whether or not a
sequence is random will depend on the specification of the
alternative hypotheses (i.e., what counts as “non-random”).
For example, participants may imagine “random” to mean
a Markov process with transition rate of 0.5. In this
case, “non-random” corresponds to a Markov processes with
transition rates other than 0.5, which will generate sequences
with too many or too few alternations between 0 and 1,
though the total counts of 0s and 1s would be approximately
equal. If instead, participants imagine “random” to mean
an unbiased coin, ‘’‘non-random” corresponds to tossing a
biased coin, which would generate sequences with many 1s
or many 0s. Given these different possibilities, we formalize
both when simulating the calibrated subjective randomness
effect reported in Rapoport and Budescu (1992). All models
were implemented in the probabilistic programming language
WebPPL (Goodman & Stuhlmüller, 2014), and model code
can be found online1.

1https://web.stanford.edu/˜xfyuan/psych204Code.

The Fair-Coin Model

Model Description

Randomization Condition The Randomization Condition
corresponds to the same experimental scenario described
in Griffiths and Tenenbaum (2001). We incorporate their
model of subjective randomness into a probabilistic model
of communication described in Shafto, Goodman, and Frank
(2012). The integrated model assumes that when participants
are instructed to generate a random sequence, they try to
convince the experimenter that the “weight of the coin” is 0.5.
This will result in sequences that are more representative of a
random sequence, such as [0 1 0]. We denote a sequence of
length k to be Sk, which can be viewed as a random variable,
and a specific instance of it to be sk (k = 2,3,4). For instance,
S3 can take values like [0 1 0]. We obtain the probability
P(Sk = sk) by assuming that participants attempt to convince
the experimenter that the sequence is randomly generated.
The goal of the model is to maximize the probability that the
listener (i.e., the experimenter) would think the sequences are
generated by a fair coin. The model returns the probability of
specific k-tuples such as P(S2 = [01]).
Dyad Condition In the Dyad Condition, choices are made
incrementally. The model assumes participants generate
responses based on the previous choice made by their
opponent and themselves. Concretely, participant A first
simulates different alternatives (0 or 1) her opponent
(participant B) might choose in the current trial, and then
combine B’s previous responses with the current possible
responses. Participant A then predicts B’s current response
according to the probability that the combined sequence
is judged as random. Mathematically, the probability of
choosing 0 given the previous responses can be calculated
using equation (1).

P(Rk = 0|Sk−1 = sk−1)

=
P(Rk = 0|Sk−1 = sk−1)

P(Rk = 0|Sk−1 = sk−1)+P(Rk = 1|Sk−1 = sk−1)

=
P(Rk = 0∧Sk−1 = sk−1)

P(Rk = 0∧Sk−1 = sk−1)+P(Rk = 1∧Sk−1 = sk−1)

=
P(Sk = (sk−1,0))

P(Sk = (sk−1,0))+P(Sk = (sk−1,1))

(1)

With equation 1 and the probability P(Sk = sk) derived
in the Randomization Condition we can compute P(Rk =
0|Sk−1 = sk−1). For instance, assuming that a player’s most
recent two choices are [0 1], the probability that he/she would
choose 0 in the current trial is given by equation (2), where
P(S3 = [010]) and P(S3 = [011]) are computed from the
model predictions in the Randomization Condition.

P(R3 = 0|S2 = [01])

=
P(R3 = 0|S2 = [01])

P(R3 = 0|S2 = [01])+P(R3 = 1|S2 = [01])
(2)
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=
P(R3 = 0∧S2 = [01])

P(R3 = 0∧S2 = [01])+P(R3 = 1∧S2 = [01])

=
P(S3 = ([01],0))

P(S3 = ([01],0))+P(S3 = ([01],1))

=
P(S3 = [010])

P(S3 = [010])+P(S3 = [011])

After participant A predicts B’s choice in the current trial,
A will make a choice according to his/her assigned role,
i.e., if A is a matcher, then A will match B’s response,
otherwise A will choose the opposite response. In addition,
participants might also be motivated to generate sequences
that are subjectively random so that their choice is not easily
predicted by their opponents. We include a weight term
w capturing how participants balance these two concerns.
The larger the w, the more weight participants put on their
opponents’ potential choices. In the current simulation, the
value of w is set to 0.6. Mathematically, the probability of
choosing 0 given previous responses for a matcher is:

P(RM
k = 0|SM

k−1 = sM
k−1∧SNM

k−1 = sNM
k−1)

=w∗P(RNM
k = 0|SNM

k−1 = sNM
k−1)+

(1−w)∗P(RM
k = 0|SM

k−1 = sM
k−1),

(3)

and a non-matcher:

P(RNM
k = 0|SM

k−1 = sM
k−1∧SNM

k−1 = sNM
k−1)

=w∗P(RM
k = 1|SM

k−1 = sM
k−1)+

(1−w)∗P(RNM
k = 0|SNM

k−1 = sNM
k−1)

(4)

Using a concrete example to illustrate how equation (3) and
(4) should be applied, we assume that the most recent two
choices made by the matcher is [0 1], and those two made by
the non-matcher is [1 1]. The probability of choosing 0 as a
matcher given her and her opponent’s previous responses is
computed using equation (5) and the one as a non-matcher is
computed using equation (6):

P(RM
3 = 0|SM

2 = [01]∧SNM
2 = [11])

=w∗P(RNM
3 = 0|SNM

2 = [11])+

(1−w)∗P(RM
3 = 0|SM

2 = [01]),

(5)

P(RNM
3 = 0|SM

2 = [01]∧SNM
2 = [11])

=w∗P(RM
3 = 1|SM

2 = [01])+

(1−w)∗P(RNM
3 = 0|SNM

2 = [11])

(6)

The value of the unknowns can be obtained from the
results of equation (1). With those probabilities, we calculate
the distribution of all the possible k-tuples and compare the
model prediction with the empirical data (Figure 1).
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Figure 1: Observed frequencies of k-tuples vs. predicted
probabilities of the Fair-Coin Model.

Figure 2: Observed distributions of 4-tuples and model
predictions for the Randomization Condition. Left:
Empirical data. Middle: Predictions of the Fair-Coin Model.
Right: Predictions of the Markov Model. The red line
indicates expected probability.

Single Condition For the Single Condition, the model
assumes that participants generate responses based on their
own previous choices, with the knowledge that their opponent
thinks they will generate a random sequence. They extend
their previous k−1 choices into a k-tuple that is subjectively
random. With that subjectively random k-tuple in hand, they
make the opposite choice.

Results of the Fair-Coin Model
Randomization Condition Figure 1, Left shows that the
model fits the data well, R2 = .94. Figure 2, Middle shows
that the model successfully captures the observation that more
heterogeneous tuples like [0 1 1 0] are more likely to be
generated than less heterogeneous tuples, e.g., [0 0 0 0].
Dyad Condition Although in the Dyad Condition we have
different formulae for the matchers and the non-matchers,
the simulation results show that the distributions of k-tuples
are the same. Therefore, we collapse these two cases
(Figure 3, Middle). The model predictions are well
aligned with the empirical data (Figure, 1, Middle), R2 =
.98. Critically, the model predicts that participants’ biased
subjective randomness is partially corrected as compared
with the Randomization Condition. The MAD and the SD
calculated from model predictions in Dyad Condition are
much smaller than the ones in the Randomization Condition
(Table 1 and 2).
Single Condition In the Single Condition, the formulae for
matchers and non-matchers are the same. Therefore, we
collapse the two cases. We find that the overall performance
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Figure 3: Observed distributions of 4-tuples and model
predictions for the Dyad Condition. Plotting conventions are
the same as for Figure 2.

Figure 4: Observed distributions of 4-tuples and model
predictions for the Single Condition. Plotting conventions are
the same as for Figure 2.

of the model seems to be fine (Figure 1, Right), R2 = .94,
though it falls short of capturing the empirical observation
that the probability of generating heterogeneous sequences
like [0 1 0 1] is high.

The Markov Model
As seen from the model fitting results above, the Fair-Coin
Model leaves room for improvement in modeling the Single
Condition. Notice that in the empirical data, both sequences
that are more representative of the outcome of tossing an
unbiased coin (e.g., [0 1 0 1]) and the less representative ones
(e.g., [0 0 0 0]) have high probabilities. It is impossible for
the Fair-Coin Model to reproduce this effect. We thus explore
the possibility that participants adopt a different definition of
random sequences (e.g., a Markov process with transition rate
of 0.5). This hypothesis has the potential to explain the data
in the Single condition because in this case a representative
“non-random” sequence would be the outcome of a Markov
process with transition rate other than 0.5, thus including too
many or too few alternations in the sequences. Indeed, this is
what Rapoport and Budescu found. We next explain how this
model simulates each condition in the Rapoport and Budescu
experiment.

Model Description
Randomization Condition Similar to the Fair-Coin model,
the Markov Model assumes that participants try to convince
the experimenter that the sequences they give are generated
by a random process. However, their notion of a “a random
process” is not “tossing an unbiased coin”, but rather a

generative process with a transition probability P(Rk 6= Rk−1)
equal to 0.5. If there is some bias in the generating process,
the transition probability should be less than 0.5, resulting
in sequences with fewer alternations, e.g., [0 0 0 0] and [1
1 1 1].2 As in the Fair-Coin Model, we denote a sequence
of length k to be Sk, and a specific instance of it to be sk
(k = 2,3,4). Using Bayes’ Rule, we obtain the posterior
probability of P(Sk = sk) when participants aim to show the
experimenter that the transition probability of the underlying
generative process equals to 0.5.
Dyad Condition For the Dyad Condition, the Markov model
is very similar to the Fair-Coin Model. It assumes that
participants believe that their opponent intends to simulate the
outcome of a generative process with transition probability of
0.5. Therefore, they use their opponent’s previous choices to
predict their opponent’s current choice and make a decision
according to their prescribed role. At the same time, they
are motivated to generate subjectively random sequences
so that their own responses are less predictable. Hence,
they will try hard to simulate the outcome of a generative
process with transition probability of 0.5. Mathematically,
the probability of choosing 0 given the previous responses
can be calculated using the same equation (1), but now
P(Sk = sk) is obtained from the Markov Model for the
Randomization Condition rather than the Fair-Coin Model for
the Randomization Condition. We then use Equation (3) and
(4) to calculate the probability of choosing 0 as a matcher or
a non-matcher conditioned on their own and their opponents’
previous responses. w was set to be 0.7 in the Markov
Model; since the Markov Model and the Fair-Coin Model
have different assumptions, there is no reason that the weight
w assigned to the predicted opponents’ responses (the Theory
of Mind reasoning component) should be equal in these two
models.
Single Condition Similar to the Fair-Coin Model, for
the Single Condition, the Markov model assumes that
participants generate responses based on their own previous
choices. Particularly, they know that their opponents think
that they intend to generate random sequences. Therefore, in
each trial they would make a response so that the opposite of
it combined with his/her previous responses will look like an
outcome of a Markov process with transition rate equal to 0.5
(see the online code for more detail).

Results of the Markov Model
Randomization Condition Figure 5, Left, shows that the
model fits the data well, R2 = .95. Figure 2, Right shows
that the model successfully captures the observation that more
heterogeneous tuples such as [0 1 1 0] are more likely to
be generated than less heterogeneous tuples such as [0 0 0
0]; still, the Markov Model was not statistically significantly

2Note that in the Randomization Condition and the Dyad
Condition we use this asymmetric prior, whereas in the Single
Condition we use a symmetric prior, assuming that a non-random
sequence would have either a large transition rate (0.75) or a small
transition rate (0.25).
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Figure 5: Observed frequencies of k-tuples vs. predicted
probabilities of the the Markov Model.

better than the Fair-Coin Model in this condition.
Dyad Condition Although in the Dyad Condition we
have different formulae for matchers and non-matchers, the
simulation results show that the distributions of k-tuples are
the same. Therefore, we collapsed these two cases (Figure
3, Right). The model predictions are well aligned with the
empirical data (Figure 5 Middle), R2 = .99. Critically, it
predicts that participants’ biased subjective randomness is
partially calibrated (see the MAD and the SD section).
Single Condition The model fits the data well (Figure 5,
Right), R2 = .98. Critically, it captures the findings that
both sequences that are more representative of the outcome
of tossing an unbiased coin (e.g., [0 1 0 1]) and those
that are less representative (e.g., [0 0 0 0]) have higher
probabilities. The model works because it assumes that
participants avoid producing sequences that are representative
of the outcome of a Markov process with transition rate 0.5;
thus, participants end up generating sequences with either too
many alternations (transition rate larger than 0.5) or too few
alternations (transition rate less than 0.5).
Model Comparison From the correlation plot we see that
Markov Model seems to fit the data better than the Fair-Coin
Model. However, since these two models have different
assumptions, traditional statistical tests for model comparison
are not applicable. Therefore, we use the R package “cocor”
which allows us to directly compare the correlations between
the empirical data and the model predictions of these two
models (Diedenhofen & Musch, 2014). The results showed
that the difference between the two correlations rFC and rM
in the Dyad condition is not significant, Dunn and Clark’s
z = −1.49, p = .136. It is also not significant in the
Randomization condition, z = −0.54, p = .589. However,
in the Single Condition, the correlation rFC is significantly
smaller than the rM , z = −3.29, p = .001. Overall the
difference between the two correlations rFC and rM is
significant, z =−2.47, p = .014. In other words, the Markov
Model provides a better fit to the data than the Fair-Coin
Model. Therefore, in the following section, we only present
the MAD and SD calculated from the predictions of the
Markov Model.
MAD and SD Consistent with the data, the model predicts
the same qualitative results for the MAD and the SD of the
three conditions (Table 1 and 2), i.e., the Randomization

Condition has the largest deviation from what would
be expected with truly random sequences and the Dyad
Condition has the smallest one. This suggests that the Markov
Model successfully captures the more calibrated subjective
randomness in the Dyad Condition.

Table 1: Mean absolute deviation (MAD) of the data and the
predictions of the Markov Model. D: Dyad, S: Single, R:
Randomization.

Data Model
D S R D S R

2− tuple 0.0150 0.0043 0.0435 0.0200 0.0000 0.0667
3− tuple 0.0105 0.0135 0.0273 0.0123 0.0211 0.0309
4− tuple 0.0087 0.0159 0.0174 0.0068 0.0160 0.0224

Table 2: Standard deviation (SD) around expectations of the
data and the predictions of the Markov Model. D: Dyad, S:
Single, R: Randomization.

Data Model
D S R D S R

2− tuple 0.0199 0.0057 0.0534 0.0231 0.0000 0.0770
3− tuple 0.0141 0.0150 0.0353 0.0155 0.0226 0.0465
4− tuple 0.0105 0.0194 0.0222 0.0092 0.0191 0.0257

Discussion
Empirical evidence suggests that people generate more truly
random sequences in competitive contexts. We explored
two probabilistic models to explain the calibrated subjected
randomness in a competitive game that was reported in
Rapoport and Budescu (1992). We find that Theory
of Mind models based on both the Fair-Coin and the
Markov formalizations of subjective randomness are able
to capture the calibrated subject randomness effects that
appear in an iterated competitive game (Dyad Condition
vs. Randomization Condition). However, the Markov
Model is better than the Fair-Coin Model in explaining
the intermediate degree of calibrated subjective randomness
that appears in a competitive game where participants must
specify their choices ahead of time (the Single Condition).

Why is the Markov Model better than the Fair-Coin Model
in simulating the Single Condition? The reason might be
that the transition probability of a generative process is more
cognitively accessible than “the weight of a coin”. When
people attempt to generate random sequences, it may be
easier to track the transition probability and make sure it
approximates 0.5 than to check whether one of the binary
responses is made more often than the other. In short,
transition probability might be a more convenient heuristic
than “the weight of the coin” in evaluating the randomness of
sequences.
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In addition, it is worth noting that the Markov Model
and the Fair-Coin model share the common Theory of Mind
reasoning structure. The only difference between these two
is the assumption on how people define “random sequences”.
Kubovy and Gilden (1991) showed that participants attend
to multiple numerical properties of the sequence, such as
number of alternations, lengths of runs, and imbalance
between 0 and 1. The Fair-Coin model focuses on the
imbalance between 0 and 1, and the Markov Model focuses
on number of alternations and lengths of runs. The
results suggest that when online feedback is not available,
participants are more likely to rely on number of alternations
and lengths of runs to produce unpredictable sequences.

We note some limitations of these models. Both
the Fair-Coin Model and the Markov Model assume that
participants are probability matching rational agents and
generate binary responses in proportion to the interpreted
randomness. Therefore, one limitation is that the models
cannot predict a player’s behavior when his/her opponent
does not use the optimal strategy. For example, if matcher
“A” plays with a person who chooses “0” more often than
“1”, A would quickly notice it and choose “0” more (if
not always). However, the two models in the current study
would not make such predictions because of the assumption
that the other agent intends to generate random sequences.
Hence, a more complete model may retain uncertainty as to
what kind of opponent the participant is playing with. This
may also be formalized using a the reinforcement learning
algorithm (Lee et al., 2004), and it is worth comparing
the assumptions and predictions of the current probabilistic
approach with previous reinforcement learning approaches.
Another limitation is that we do not explicitly manipulate the
number of previous trials the models consider and compare
the corresponding performances. However, post-hoc analysis
indicates that in both the Fair-Coin model and the Markov
model, taking more previous trials into account results in
better calibrated subjective randomness, which is consistent
with the results of previous connectionist modeling that
manipulates the working memory capacity of the models
(West & Lebiere, 2001).

In summary, the current investigations suggest Theory of
Mind reasoning interacts with participants internal models of
subjective randomness in the generation of random sequences
in competitive contexts. Future computational approaches
should take this into account when modeling subjective
randomness.
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Abstract

Detailed transfer of procedural knowledge has been modeled in
Actransfer, an extension of ACT-R, by combining the primitive
memory operations of productions (PRIMs) with the architec-
ture’s procedural learning mechanism (Taatgen, 2013c). This
work explores whether these same principles can be applied
to the Soar cognitive architecture, which uses different mod-
els of working memory and procedural learning. We confirm
that these principles can transfer to an unmodified version of
Soar. Our research contributes a novel model of skill learning
based upon a deeper level of primitive skill composition than
described in the PRIM model that is suitable for unbounded
working memory architectures, and which yields transfer pro-
files similar to those revealed in human studies.
Keywords: cognitive transfer; skill acquisition; cognitive
training; cognitive architecture; ACT-R; Soar.

Introduction
For decades, cognitive architectures (Newell, 1990) have
been proposed as unified theories for achieving the general
capabilities found in the human mind. Transfer of proce-
dural knowledge is one such capability (Taylor, Kuhlmann,
& Stone, 2008). The primitive elements theory of cogni-
tive skills, proposed by Niels Taatgen, has recently achieved
success in improved modeling of human transfer (Taatgen,
2013a, 2013c). Taatgen implemented his theory in a new cog-
nitive architecture, Actransfer, which extends the ACT-R cog-
nitive architecture (Anderson, 2007) to include this transfer
modeling. Taatgen noted that, while his implementation was
based upon ACT-R principles, the core ideas could be applied
to other theories of cognition (Taatgen, 2013b). The work de-
scribed here pursues this line of research in the Soar cognitive
architecture (Laird, 2012), and briefly compares primitive el-
ements learning in Soar with that of Actransfer and humans
performing a common task.

A significant contribution of this work is that we extend
Taatgen’s theory to include a more general level of learn-
ing that supports unbounded, dynamic architectural memory
structures and that provides a deeper model of the nature of
skill composition.

The following sections first describe Actransfer and the un-
derlying PRIM model before introducing the PROP model,
the novel application of these ideas in Soar.

Background
The identical elements model of learning by Thorndike
(1922) states that transfer among tasks occurs only inasmuch
as there are identical cognitive elements shared in task repre-
sentation and execution. Singley and Anderson (1987) pro-
posed a more precise definition through the identical pro-

ductions model, in which complex cognition is controlled by
procedural knowledge represented as if-then production rules.
This representation allows transfer to the extent that different
tasks share identical productions.

Singley and Anderson (1985) evaluated the identical pro-
ductions model using ACT, a precursor to ACT-R. By com-
paring the model with human performance, they found that in
some cases it produced a fairly accurate relative prediction of
human data. In other cases, only half the transfer measured
in human participants was achieved, indicating that the model
was incomplete.

Primitive Elements Theory & PRIMs

Taatgen proposed the primitive elements theory (Taatgen,
2013c) as a modification of the identical productions model
of transfer. There are two aspects to the theory. First, prim-
itive elements of transfer are defined not as complete, task-
specific productions, but as the individual task-general mem-
ory operations used in productions, such as the general action
of copying a value from one memory slot to another. Sec-
ond, the theory outlines a model of human skill acquisition
and transfer based on hierarchically composing these primi-
tive operations through practice into task-specific rules, using
a procedural learning mechanism. Composed skills will share
identical elements if they employ similar memory operations.

Actransfer, the implementation of these ideas, was applied
to human transfer experiments (Chein & Morrison, 2010;
Elio, 1986; Singley & Anderson, 1987), achieving results that
both align with human data and provide deeper theoretical ex-
planations for transfer than earlier models.

Primitive elements theory implemented in Actransfer rep-
resents what Taatgen called the PRIMitive information pro-
cessing element (PRIM) model. In this model, PRIMs are
the fundamental, innate memory operations that can be com-
posed through practice into any skill. Compositions of PRIM
sequences are transferable when shared among rules.

Conditions Action Other

Compare Equal Copy Load Task-Specifics
Compare Unequal
Empty
Nonempty

Table 1: The six types of PRIMs. Loading task-specifics is a PRIM
that loads values into memory slots for use by other operations.
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(PRIM instruction-example
retrieval.slot2 <> goal.slot2
retrieval.slot2 <> nil

==>
query.slot1 := consts.slot1
query.slot2 := retrieval.slot2
action.slot1 := consts.slot2
action.slot2 := retrieval.slot2

)

Figure 1: Example pseudo-code primitives of a rule with two com-
pare conditions and four copy actions. Slots are organized under
buffers such as retrieval or action.

Memory Operations
Actransfer working memory is composed of a set of buffers,
each having a fixed number of memory slots. All Actrans-
fer skills (rules) are represented as sequences of six types of
memory operations, the classes of PRIMs listed in Table 1.
This restricted set of compare and copy actions was chosen
to reflect previous ACT-R work in basal ganglia modeling
(Stocco, Lebiere, & Anderson, 2010).

While there are six PRIM types, there can be many in-
stances of each corresponding to interactions among different
memory slots. This is analogous to how computer programs
use a finite set of register operations in an assembly language,
such as ADD or LOAD, but can apply these among regis-
ters in many ways. In Figure 1, while each action is a copy
operation, each is a different primitive because it copies us-
ing different slots. When Actransfer was configured with 31
working memory slots, this resulted in 1,693 PRIMs for the
combinations of these slots with each type of operation (Taat-
gen, 2013c). Different rules share PRIMs if the same slot
operations are used (regardless of the values in those slots).

Independence from values in memory slots makes a
PRIM task-general. Instead of using conditions such as
buffer1.slot1 == "foo", the architecture preloads con-
stants into a reserved set of slots, effectively making the con-
dition buffer1.slot1 == consts.slot1. Thus, a differ-
ent rule using different constants, such as buffer1.slot1
== "bar", still employs the same primitive. This generaliza-
tion allowed much of Taatgen’s novel transfer across tasks.

Procedural Learning
An Actransfer agent learns a skill by rehearsing it step-by-
step according to declarative knowledge recalled from long-
term memory. Practice is gradually converted into procedu-
ral knowledge. These declarative instructions describe rules
as sequences of PRIMs applied with specific constants, as
shown in the bottom row of Figure 2. When the agent lacks
applicable procedural knowledge, it recalls a list of instruc-
tions that describe a single rule, and then sequentially evalu-
ates each instructed condition and action.

Actransfer employs ACT-R’s procedure compilation sys-
tem to transform this practice into skill. Each PRIM instance
is implemented as an innate rule in procedural memory. Each

Figure 2: Hierarchical clustering of PRIMs, adapted from Taatgen
(2013c). Task-general conditions are shown in white, task-general
actions are in gray, and the instruction head, which includes load-
ing task-specific constants, is shown in red. All instructions begin
with loading task-specific constants into memory. ACT-R produc-
tion compilation combines repeated sequences of task-general con-
dition and action PRIMs, until finally merging with task-specific
constants, resulting in a single production. In this example, actions
form a query to retrieve the next item in a sequence from declarative
memory, while printing the current number to output.

Actransfer decision corresponds to firing a single rule. When-
ever two different rules are fired in consecutive decision cy-
cles, the architecture attempts to combine them into a new
rule that can perform the work of both in a single decision.
Such rules are not used initially the next time the same oper-
ations are practiced, but the more the original rules are prac-
ticed in sequence, the more likely it is that the combining rule
will be used in their place. Once this replacement occurs, the
new rule fires alongside other instructed rules, and the combi-
nation process repeats. As skills are practiced in this manner,
procedure compilation learns an effective binary hierarchical
clustering of skill elements, as shown in Figure 2. Compiled
operations perform instructions in parallel rather than seri-
ally, decreasing execution time with practice and clustering.
The final step of learning incorporates any task-specific con-
stants into a single generated rule. With enough practice, all
instructions are converted into such procedural knowledge, so
that instruction recall becomes unnecessary.

Any intermediate compilations between the original PRIM
sequence and the complete task-specific rule can be used for
transfer, as the time to learn a new rule is less when por-
tions of its instructions have already been compiled. The
PRIM model thus predicts improved performance with re-
peated practice based both on incremental composition of op-
erations and on reuse of such compositions.

PROPs - Primitive Skill Elements in Soar
Soar’s working memory is not a fixed set of slots, but is an
unbounded directed cyclic semantic graph rooted in a state
ID, as in Figure 3, with each possible attribute path through
the graph referencing a unique memory element. It would
seem impossible to use primitive elements in Soar, since an
unbounded set of memory locations would define infinitely
many PRIMs. The solution to applying these concepts to
Soar lies in recognizing that Soar’s information processing

182



Figure 3: Example Soar working memory. Working memory is a
directed graph rooted in a single state ID (shown as S1). Nodes can
have any number of edges each pointing to a single value. Values
can be more IDs or literals such as numbers or strings.

also differs from that of Actransfer.

Operators
A Soar decision cycle corresponds to the selection of a sin-
gle operator, an architectural construct created, selected, and
applied by rules to guide decision making. Selection of a sin-
gle operator can involve firing several rules in parallel and/or
serial, and rules can use wildcard variables to match a poten-
tially dynamic state and shape of working memory.

An important distinction exists between an operator and its
abstract definition. The set of rules describing an operator
form the abstract definition, and an individual operator is the
application of this definition in a decision to specific mem-
ory elements. Because Soar rules use variables, an abstract
definition can be applied through an unbounded number of
operators corresponding with the possible applications of the
rule logic to states of the unbounded working memory graph.

We define the set of primitive memory operations within
Soar decisions as the PRimitive OPerator processing ele-
ments (PROPs) that correspond to the most primitive oper-
ators from which all Soar agent processing can be composed.
PROPs are defined through a fixed set of innate rules corre-
sponding to each type of PROP listed in Table 2, which in turn
correspond to the basic conditions and actions usable in Soar
rules. While all Soar information processing can be com-
posed from operators of these 22 abstract types, the number
of possible PROPs is unbounded, since each corresponds to
specific memory elements. For example, in Figure 4 there are
four copy action operators, and these would be implemented
through the same defining rules, but they remain distinct op-
erators because they use different memory elements.

PROPs can only be applied if given specific memory ref-
erences as arguments. The memory referencing PROP is
what allows true support for unbounded memory by tracing
a declaratively-known path through the memory graph and
supplying the located element as an argument to another op-
erator.1 The number of memory references required to define
each type of PROP is also shown in Table 2.

PROPs correspond to PRIMs as the primitive elements of
decision making in Soar, but unlike PRIMs they are not in-
nate. Initially, memory references must be reconstructed to

1This includes referencing any task-specific constants, and thus
there is no separate primitive for that operation.

Conditions Actions Preference
Actions

Other

Equal (2) Copy (2) Acceptable(1) Memory
Unequal (2) Remove (1) Indifferent (1) referencing
Exists (1) Add ID (1) Better (2)
Not Exists (1) Worse (2)
Type Equal (2) Best (1)
Greater (2) Worst (1)
Greater/Equal (2) Reject (1)
Less (2) Require (1)
Less/Equal (2) Prohibit (1)

Table 2: Table of PROP types. In parentheses after each PROP is the
number of memory element arguments required to apply the abstract
definition into an operator.

pp {PROP-instruction-example
(s1.retrieval.item2 <> s1.goal.end)
(s1.retrieval.item2)

-->
(s1.query.type := s1.consts.slot1)
(s1.query.item1 := s1.retrieval.item2)
(s1.action.out1 := s1.consts.slot2)
(s1.action.out2 := s1.retrieval.item2)

}

Figure 4: PROPS instruction logic mirroring Figure 2. Because each
primitive is self-contained, the full path from S1 must be specified
for each working memory element.

redefine a PROP any time it is used. However, with practice,
procedural knowledge to use memory elements is learned (see
below), providing rules similar to the innate PRIMs of Ac-
transfer. Thus, primitive memory access skills are based upon
references actually used by the agent rather than the space of
all possible memory operations. PRIMs in Actransfer may
be considered a special case of the PROP model in which the
working memory graph elements are arranged to match Ac-
transfer slots and the agent is already trained in their use.

Procedural Learning

Soar’s procedural learning mechanism also creates rules by
combining the results of decision cycles, and can be used to
compose skill elements hierarchically as in Figure 2. How-
ever, Soar does not compose rules that subsume pairs of se-
quential decisions, but instead summarizes any number of de-
cisions and rules that are used to resolve a subgoal impasse.

An impasse is an event that arises when normal decision
making cannot proceed, such as when no operator is avail-
able for selection or no procedural knowledge carries out a
selected operator. When an impasse arises, a new substate is
automatically created in working memory. Operators are se-
lected in the substate to resolve the impasse. When the results
of this work allow processing in the original state to resume,
Soar automatically creates rules that summarize the rule fir-
ings and decision making that led to resolving the impasse.
This learning process is called chunking. In similar future sit-
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uations, the learned rules (chunks2) fire to avoid the impasse,
replacing the substate processing. Soar chunks do not take ef-
fect gradually with practice as do ACT-R rule compositions,
but fire whenever their conditions are met.

The PROP model is implemented through standard Soar
rules that can be loaded into any Soar agent. As with Ac-
transfer, declarative instructions describing the skills being
taught are initially loaded into the agent’s long-term memory,
and are rehearsed during agent operation whenever the agent
has no known operators to select. However, where Actrans-
fer employed an architectural modification to automatically
recall instructions when no decisions could be made, this be-
havior comes naturally in Soar through agent reactions to im-
passes. A Soar agent is also not restricted to only respond to
an impasse with instruction practice, but could choose from
available strategies according to the situation at hand. The
PROPs agent by default begins instruction practice by recall-
ing and following instructions within the new substate. Fur-
ther impasses during instruction evaluation allow the agent to
compile pairs of instructed procedures through chunking.

The amount of practice taken by a PROPs or Actrans-
fer agent before compiling procedures into higher skills can
affect whether those skills transfer across tasks (Anderson,
1982). Consider two rules, one composed of primitives A,
B, C and the other of B, C, D. Ideally, the skill (BC) is
learned that reduces training time for both rules, as opposed
to (AB) and (CD), which cannot be shared. Actransfer does
not replace element pairs with their combination until ex-
perience determines that they co-occur often across tasks.
Once a combination replaces the original components, use
of that rule prevents the architecture from further sampling
co-occurrence of the old component rules in that context.

For Soar to combine skills based on co-occurrence, a
declarative representation of experience is used to mediate the
chunking process. The skill hierarchy of Figure 2, which im-
plicitly reflects the ACT-R learning approach, is represented
literally in the PROPs agent’s long-term declarative mem-
ory, along with declarative measures of how often instruction
items are experienced together. When two elements in this hi-
erarchy co-occur beyond some threshold, T , the agent chunks
them into a new skill element.3 This co-occurrence reasoning
is not integral to the PROP model, and would be unnecessary
if Soar defined gradual confidence-based chunking.

Levels of Skill Composition
Through chunking, a PROPs agent learns three different types
of knowledge that vary in complexity and provide speedup in
different ways.

The first level of learning is of the use of memory through
practice in applying PROPs from their abstract definitions,
and is unique to this model. This processing is chunked into
procedural knowledge when PROPs are compiled into new
skill elements (the first level of composition in Figure 2).

2Unrelated to ACT-R chunks.
3Different metrics can be easily substituted for linear co-

occurrence, but this simple measure works sufficiently well here.

The next type of learning is the normal hierarchical skill
compilation, which is also the core of learning in Actrans-
fer. Gradually improved performance comes from repeatedly
composing instructed decisions into fewer, more task-specific
rules through chunking, and from transferring such knowl-
edge from previous compositions.

The third, outer-most level of learning is that which
achieves independence from declarative instruction look-up.
As with Actransfer, once general conditions and actions in an
instruction set are merged as far as possible, a final learning
step summarizes the instruction set into a task-specific rule
that is executed when needed without fetching or evaluating
instructions (the final stage shown in Figure 2).

By comparing these stages with the corresponding mech-
anisms of Actransfer, we can predict that a PROPs agent
performing level-one learning should have a steeper initial
performance curve as it learns to use its memory refer-
ences. However, the main learning profiles of the architec-
tures should be similar, including the amounts of transfer they
provide, since they share the same core level-two learning
process. We can also predict that the more aggressive nature
of Soar chunking compared to gradual ACT-R rule compila-
tion should result in the PROPs agent displaying a slightly
more discrete and complete independence from instructions
upon completion of its third level of learning.

Evaluation
Testing these predictions, we gave a PROPs agent declara-
tive instructions to perform in a simulation of the Elio (1986)
study that measured human transfer. Instruction logic and
memory organization copied an Actransfer simulation by
Taatgen (2013c), so that both model implementations learned
to compose equivalent sequences of memory processing.

We ran two experiments. First, we tasked the agent to learn
from scratch all three levels of knowledge described. Then,
we repeated the experiment, but bypassed level-one learning
by initially supplying the agent with all procedural knowl-
edge necessary for memory referencing, mirroring Actrans-
fer’s use of innate PRIMs. We varied the learning threshold
T , the number of times two skill elements must be seen to-
gether to be chunked into a new skill, and found values in the
range of 16 to 24 provide comparable behavior to human and
Actransfer results. T = 16 is used in data shown below.

Because the PROP model is implemented through rules
rather than architectural modifications, maintaining instruc-
tion co-occurrence knowledge requires agent decision cycles,
and this manifests as performance overhead during training.
For a better comparison of the models, this overhead is omit-
ted from this evaluation, as it is a reflection of implementa-
tion rather than part of the theory. All data are averaged over
8 samples, as in Taatgen’s originally reported results.

Actransfer performance was originally reported in simu-
lated time, but decision cycles are shown here to allow a more
meaningful comparison across architectures. 4

4Actransfer follows ACT-R in assuming 50 ms per decision by
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Step Calculation Operation Type
Particulate rating Solid× (lime4 − lime2) Component
Mineral rating greater of (algea/2)(solid/3) Component
Index 1 Particulate+Mineral Integrative
Marine hazard (toxinmax + toxinmin)/2 Component
Index 2 Index1/Marine Integrative
Overall quality Index2−Mineral Integrative

(a) Example procedure. Component steps only reference inputs. In-
tegrative steps require remembering results of previous calculations.

SOLID ALGAE LIME TOXIN

6 2 3 4
5 8
1 7
9 2

(b) Participants look up hypothetical water sample data from among
ten values provided per trial. For lime or toxin values, procedure
instructions either specify the row index to look up or instruct to
find the max or min value.

Figure 5: The Elio task

The Elio task involved calculating hypothetical pollution
rates based on water samples. Subjects repeatedly performed
mental calculations using given input values. In the human
study, subjects were trained in an initial procedure until they
achieved perfect recall, and then tasked with performing it 50
times on various inputs (see Figure 5). Following this, sub-
jects were assigned to 50 trials of one of three transfer con-
ditions: transferred integrative, transferred component, and a
control. The first two of these shared different types of cal-
culations with the training, but the control did not. A basic
ACT-like identical productions model would predict transfer
from the training procedure to procedures that shared calcula-
tions, but would not predict transfer to the control. Yet trans-
fer to the control was evident in the human results, as shown
in Figure 6 through the faster initial performance of the trans-
fer tasks compared to the training. Elio’s transfer condition
data measure the mean performances from the first and last 25
trials per subject. Depicted human training data shows Elio’s
power-law fit to human performance. In the original study,
results for component and integrative calculations were re-
ported separately. Only performance on component steps is
shown here for brevity, as integrative results are comparable.

Control transfer is also reflected in the Actransfer agent.
The transferred component procedure shows much additional
transfer as well. This is because it shares component calcula-
tions with the training, allowing classic identical productions
transfer in addition to primitive skill composition transfer.

We first ran our PROPs agent on the Elio task perform-
ing full learning of knowledge levels one through three. We
then ran the agent with level-one procedural knowledge pre-
defined for all relevant memory referencing PROPs. Perfor-
mance for both experiments is shown in Figure 7.

Four results stand out. First, as expected, the initial trans-

default, with additional time for operations such as long-term mem-
ory retrievals. We similarly assume 50 ms per Soar decision.

Figure 6: Human and Actransfer performance for component steps.
Data for problems 1-50 show training performance. Data for prob-
lems 50-100 show performance for each of the three transfer condi-
tions. Actransfer data were generated using supplementary materials
from Taatgen (2013c).

Figure 7: PROPs agent performance of the Elio task, measured in
decision cycles. Hierarchy management overheads are not included.
Left: Learning all levels. Right: Learning with predefined PROPs.

Figure 8: The progression from T = 1 to T = 2.

fer condition performances in the PROP model indicate the
same rates of transfer as in the Actransfer agent. Second,
unlike Actransfer, in both experiments the PROPs agent per-
formance sharply converges to maximal performance, which
is just under ten decision cycles. This is due to the discrete
nature of Soar chunking, particularly with level-three learn-
ing, when independence from instructions is permanently
achieved in a single chunking step. Third, the PROPs agent
that only performs level-two and level-three learning roughly
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shows the same power-law performance as Actransfer, as is
expected since they perform similar learning processes. Fi-
nally, one notes that if modeling simulated time using 50 ms
per decision cycle, the PROPs agent with full learning of
levels one through three performs at similar simulated time
scales to the human model, beginning at 10 s, with the excep-
tion of then converging to maximal performance as discussed,
ending at about 0.5 s.

Learning threshold T controls the sharpness of the learn-
ing curve, as well as the transferability of composed skill el-
ements. A threshold of T = 1 causes near-instant skill ac-
quisition, but makes blind combinations that might not be
transferable. Through an analysis of the number of chunks
transferred across procedures with varying T (not shown), we
found that even a threshold as low as T = 2 allowed sufficient
co-occurrence sampling for achieving near-optimal transfer
in this task. Figure 8 demonstrates the improved initial la-
tency of the transferred component case, which is not further
improved with the higher threshold of Figure 7.

In summary, our experimentation indicates that the PROP
model not only provides the same transfer as the PRIM
model, but that deeper learning with memory references to
suit dynamic memory also aligns with human performance.

Discussion
Primitive elements theory distinguishes among three types
of skills: innate, task-general, and task-specific (Taatgen,
2013c). Innate skills are single primitives, task-general skills
are combinations of primitives, and task-specific skills are the
combinations of general skills with specific constants. These
correspond to the three levels of learning in the PROP model.
We theorize that level-one memory management knowledge
would be learned (possibly developmentally) by human sub-
jects prior to participating in the Elio task. Actransfer by con-
trast assumes a fixed configuration in which memory slots and
their use are innate.

Actransfer’s fixed set of PRIMs is useful in that they must
in some respect be shared across any use of the architecture,
just as registers must be used in any normal processor logic.
In that model, the number of innate PRIMs expands combina-
torially with working memory capacity, though only a subset
might be used. In the PROP model, however, while transfer
likewise depends on using a common set of memory refer-
ences, PROPs only reflect skill elements used in practice.

ACT-R’s and Soar’s procedural learning mechanisms dif-
fer in many ways, yet provide similar models of learning with
practice. However, as Soar chunking does not currently de-
fine gradual skill acquisition under uncertainty. To support
such learning requires decision-making overheads that are not
part of the PROP model, suggesting that architectural support
for gradual confidence-based chunking provides a better fit to
this sort of learning, and might be worth pursuing in Soar.

We have shown that despite differences between ACT-R
and Soar models of working memory and learning, the prim-
itive elements theory can be implemented in both to achieve

similar results. In so doing, we introduced the PROP model
for information processing in unbounded memory spaces
through memory reference learning. The PROP model builds
upon Taatgen’s original PRIM model to provide a deeper and
more general theory for the acquisition of cognitive skills.
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Abstract

Term rewriting is a well established formal method used for
defining semantics of programming languages, program trans-
formations, automatic theorem proving, symbolic program-
ming, intelligent tutoring system development etc. In this pa-
per, we present a language based on term rewriting as an al-
ternative formalism for modelling cognitive skills. We show
how the language overcomes some deficiencies of production
systems (compositionality, readability, control-flow etc.) and
how, as a consequence, it can help with addressing practical
problems raised by the cognitive modelling community.

Keywords: ACT-R; Language for Cognitive Modelling; Pro-
duction Systems; Term Rewriting

Introduction
Since the pioneering work of Simon and Newell, production
systems have been a dominant formalism for cognitive mod-
elling of human behaviour. A production system is a set of
condition-action pairs, called production rules or simply pro-
ductions. Production conditions test against a collection of
facts, commonly called working memory. A typical produc-
tion system interpreter is a loop that continuously selects and
fires a production whose condition matches the current work-
ing memory content. Firing a production executes its action
which can add, remove or modify working memory facts. If
more than one production matches at a time, a conflict resolu-
tion strategy is used to select and fire a single one. In addition
to cognitive modelling, production systems have been used
for implementing Knowledge-Based expert Systems, Intelli-
gent Tutoring Systems (ITSs), Business Rule Engines etc.

ACT-R Cognitive Architecture
The ACT-R cognitive architecture (Anderson, 2007; Ander-
son, Byrne, Douglass, Lebiere, & Qin, 2004; Taatgen &
Lee, 2003) is similar to general production systems. It dis-
tinguishes procedural knowledge represented as production
rules from declarative knowledge represented as a set of un-
typed key-value pairs called chunks. Keys are commonly
called slots. A distinctive characteristic of ACT-R is that the
main goal of its development has been to faithfully reproduce
human behaviour. For that reason the architecture introduces
a number of constraints not present in general-purpose pro-
duction rule engines. The architecture is divided into a num-
ber of modules, each one specialised for performing specific
brain functions. The central procedural module stores and in-
terprets production rules and coordinates the function of all

the other modules. The visual, aural, motor and speech mod-
ules communicate with the outside world. The goal module
(also called control state module), the imaginal module (also
called problem state module) and the declarative module are
specialised for different aspects of internal cognitive process-
ing. The goal module keeps track of the current state in a
task, the imaginal module keeps track of the current internal
problem representation and the declarative module is respon-
sible for storing long term declarative knowledge and making
it available when needed. The modular nature of the architec-
ture reflects the modular nature of the brain itself, and each
module can be mapped to a particular brain region (Anderson,
2007). A module is capable of fast internal parallel process-
ing, but can only communicate with other modules through a
buffer that can contain a single chunk at a time. The proce-
dural module does not have its own buffer. It can read buffer
content of all the other modules, test the content against LHSs
of many productions in parallel, but it can only fire a single
production at a time. A cognitive skill is a sequence of pro-
ductions each of which can test against the buffers and per-
form actions that directly or indirectly modify the buffers.

Cognition is not a deterministic but rather a stochastic pro-
cess. Knowledge or lack of a skill is not a binary presence
or absence of a given production. It is rather a continuous
quantity. For example, a skill may be present, but not trained.
All the new skills get better with time. To model that, the
ACT-R symbolic system is augmented with a neural-like sub-
symbolic layer. Each chunk has an activation value which
determines whether or not it will be retrieved from declara-
tive memory. If its activation is lower than a certain threshold
value, a chunk is not retrieved even if it matches the declara-
tive request. Each production has a utility value that is used
in conflict resolution. When multiple productions match, the
one with highest utility is selected. Both chunk activations
and production utilities are evolving quantities. Activations
and utilities start low for newly formed chunks and produc-
tions respectively, and get higher with practice.

The Programming Model of ACT-R
An ACT-R program consists of a set of production rules and
chunks. As a programming language, ACT-R inherits all the
characteristics of the production system paradigm. In isola-
tion, productions can be seen as similar to imperative proce-
dures which modify some global state or to functions that take
the state as an argument and return a new modified state as a
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result. Different from procedures and functions, a production
is never called directly in code. A programmer writes rules,
and the interpreter decides which rule to fire when. Control
flow in production systems is implicit. The production system
paradigm is well suited for programming solutions to prob-
lems with a large number of independent states and a set of
relatively independent actions that can be performed on those
states, and not so well suited for programming solutions to
problems in well-structured domains, where problem states
are related by some formal laws and actions are organised
into complex control flows (Buchanan & Shortliffe, 1985). A
typical example of the former class are business rule engines,
and of the latter class are typical problems that both students
and experts solve in STEM fields. Production systems are
less suitable for such a domain because of the implicit con-
trol flow. As productions can communicate only indirectly
through working memory, the only way to establish a desired
control flow is to write and read control information to and
from that (global) memory. Doing so results in a goto-like
coding style which is error-prone and produces code that is
difficult to follow, reason about, compose, reuse and main-
tain. Nevertheless, production systems have often been used
for modelling problem solving procedures in STEM fields,
particularly in ITSs (Anderson, Corbett, Koedinger, & Pel-
letier, 1995). The reason for that choice may be partly histor-
ical - ITSs emerged from the ACT-R research.

One might argue that implicit control flow in the context of
cognitive modelling reflects the flexibility of the brain itself.
While that is true, we are investigating the programming as-
pect of cognitive modelling here. Many published cognitive
models1 are based on complex control flow. This holds in par-
ticular for models of learning from instructions or models of
metacognitive processes. Both explicit learning and metacog-
nition require complex control flow and planning. The pro-
duction compilation mechanism (Taatgen & Lee, 2003) even-
tually produces efficient productions with implicit control
flow, but the modeller has to write complex productions with
complex control flow. Using ACT-R terminology, production
systems become less suitable as a programming model with
increased usage of the goal (control state) module. Interest-
ingly, Taatgen (2005) formulated a minimal control principle,
which states that humans tend to use a strategy with minimal
number of control states while learning a new task. What is
more difficult for humans to express as a production system
is also more difficult for the brain to execute. Many tasks
do require at least some amount of control information and
some tasks require complex control. Hence, cognitive mod-
elling can benefit from a programming formalism in which
both flexible and complex control can be expressed naturally.

One more difficulty with ACT-R as a programming lan-
guage, is that modellers have to think explicitly about which
modules to use for given actions. Using an appropriate mod-
ule is important as different combinations of modules for per-
forming the same task can give different predictions of tim-

1http://act-r.psy.cmu.edu

ing, fMRI features etc. Ideally, we would like a modeller to
think about task models at a high-level of abstraction and let
an interpreter map different actions from a given model to the
appropriate modules. An interpreter should know as much
as possible about the ACT-R theory and the modeller should
focus on the domain-specific features of a particular task.

Heeren and Jeuring have developed a language based on
strategic term rewriting (Heeren, Jeuring, & Gerdes, 2010)
and used the language to create a number of ITSs and serious
games. Besides addressing the software engineering issues
of production systems mentioned above, the approach uses
well established and rigorous formal methods from formal
language theory and practice to analyse and automatically
calculate feautures important for intelligent tutoring, such
as instructions and feedback. Strategic term rewriting as a
computational paradigm allows for writing high-level declar-
ative task models using domain-specific notations. For exam-
ple, reducing a logic expression to disjunctive normal form
is modelled as a set of rewrite rules corresponding to laws
of propositional logic (e.g. not(not(p)) -> p). A flexible
strategy applies all rules extensively until no rule can be ap-
plied any more. Such a strategy is similar to strategies used
for interpreting production systems. Contrary to production
rules, more complex strategies can be expressed naturally.
Rewrite rules can be composed to build complex first-class
procedures which themselves can be reused in other proce-
dures and composed to build complex hierarchical domains.

Most of the current cognitive architectures do not offer an
easy way to reuse knowledge from a model (Taatgen, van
Vugt, Borst, & Mehlhorn, 2016). As a result, most pub-
lished models are isolated theories sharing only common ar-
chitectural features, and ,,few cognitive modellers ever use, or
even look at, models built by other modellers”. Taatgen et al
claim that using tools for interactive programming, similar to
iPython notebooks, can make cognitive models more acces-
sible and understandable. Term rewriting as a computational
paradigm can help addressing all of these problems. Firstly,
we can easily compose and reuse terms and rewrite rules, both
automatically and by programmers. Secondly, the high-level
nature of term rewriting allows for writing cognitive models
that are easier to understand (compared to low-level ACT-R
models) even by modellers who are not familiar with classi-
cal AI programming. Finally, term rewriting is an excellent
and natural technique for interactive development.

This paper is organised as follows: we first briefly describe
a symbolic language based on term-rewriting. Then we show
how the language can be used to develop a cognitive model of
the pyramid task (Tenison, Fincham, & Anderson, 2016), and
we discuss which characteristics an interpreter for the lan-
guage should have so that it can give cognitive predictions.
We conclude by comparing the introduced approach with re-
lated work and giving future work. Although we base our
work on ACT-R, the language itself can be used for any cog-
nitive theory by augmenting the interpreter with knowledge
of that particular theory.

188



Language
The design of our language is inspired by Mathematica
(Wolfram Research, Inc., 2017) and Pure2. The accompany-
ing example is implemented in Mathematica3. Fundamental
constructs of the language are expressions (terms) and rewrite
rules. For rules of the form f(e1,e2...)->rhs we use the
terms rule and function interchangeably. Table 1 gives ex-
amples of these and other language constructs used in this
paper. The interpreter of the language is a higher-order condi-
tional term rewriter with a programmable evaluation strategy.
A cognitive model is a set of rewrite rules in the language.
A cognitive task is a (potentially complex) term. The inter-
preter traverses the term following an evaluation strategy and
applies rewrite rules to sub-terms. A single traversal step,
followed by the application of one or more rewrite rules to
a visited sub-term, is roughly equivalent to the three stages
in a cognitive task, encoding, solving and responding, as de-
fined in (Tenison et al., 2016). We leave a detailed discussion
of the interpreter and evaluation strategies for future work.
Fundamental aspects of the interpreter important for cogni-
tive modelling are described in the next section. The model
used in this paper is encoded as a simple small term, hence
no traversal strategy is necessary.

Model
We use the cognitive model of the pyramid task (Tenison et
al., 2016) as our main example in this paper. It requires rela-
tively complex control flow, is expressed in a relatively recent
version of ACT-R (6.0), and uses most of the modern ACT-R
features. The pyramid task is a simple arithmetic task of the
form base$height where base and height are numbers. To
evaluate a pyramid, we start from base and recursively add
base-1 to it until we reach the total of height addends. For
example, 8$3 is evaluated as 8+7+6=21. The (Tenison et al.,
2016) model predicts three learning phases, which were cor-
roborated by neural imaging experiments. A learning phase
consists of three learning stages - encoding, solving and re-
sponding. In the first learning phase there is a long solving
stage. With enough practice with a given pyramid, people
learn to retrieve the answer for that pyramid without doing
the arithmetics, shortening the solving stage significantly. Fi-
nally, with even more practice with the same pyramid, people
transition to the third learning phase in which they automati-
cally respond without even retrieving the answer. Here we de-
scribe the published ACT-R pyramid model informally, using
a self-explanatory pseudo-syntax for chunks only occasion-
ally. Rather than trying to follow every technical detail of the
model from (Tenison et al., 2016), we use the general the-
oretical ideas from the model, namely the ACT-R theory of
learning by following instructions (Salvucci, 2013; Taatgen
& Lee, 2003). We sometimes use slightly more generic pro-
ductions than those in the published model. For example, in-
stead of having a special production retrieving the sum of two

2https://purelang.bitbucket.io
3https://github.com/IvicaM/CogEx

numbers, we assume the existence of more general produc-
tions that can retrieve results of any unary, binary or ternary
operation respectively. In addition, we use simplified declar-
ative knowledge of arithmetics by treating two-digit numbers
as atomic in the same way single-digit numbers are. This is
a simplification of a real model, but we want to keep the ex-
ample model simple. As the entire approach we describe is
highly compositional, adding more complicated representa-
tion for multi-digit numbers is just a matter of more work.
Table 2 gives an informal description of representative parts
of the ACT-R pyramid model.

We treat the pyramid task as a formal language with a
grammar and semantics. A cognitive model of the pyramid
task is an interpreter of that language. To interpret an ex-
pression from the language (i.e. to solve a particular pyra-
mid problem), the expression is parsed into an abstract syn-
tax term. After parsing, we apply a series of transforma-
tions to the term to obtain a desired solution. Finally, the
solution is used somehow, e.g. it is written or pronounced or
used as an input to some other sub-problem. The three stages
of the interpreting process roughly correspond to the encod-
ing, solving and reporting stages. A typical interpreter of a
programming language parses the entire source code into a
large abstract syntax tree and performs a series of in-memory
traversals and transformations on that tree. Doing the same
in interpreters that serve as cognitive models would gener-
ally be psychologically unrealistic due to limited capacity of
the working memory. Cognitive models are more like sets of
small interpreters each of which interprets a small portion of,
say, a visual scene (the equivalent of source code). To per-
form an entire task, small interpreters are composed using a
traversal strategy. In case of the pyramid task, however, the
entire problem can be parsed and solved in the head. We leave
implementing the parsing stage for future work. Here, we as-
sume that the parsing (encoding) stage is already performed,
resulting in an abstract syntax term. For example, parsing 8$3
produces the following term:

solvePyramid(base ->8,height ->3) (T1)

The above term has a straight-forward interpretation in the
context of ACT-R theory - a goal to solve a pyramid is stored
in the goal buffer, and base and height are stored in the imagi-
nal buffer. More generally, the contents of the goal and imag-
inal buffers are represented as a function call, and a list of
arguments of that function, respectively. Different ways of
achieving a goal are modelled with different definitions of the
function representing that goal. The simplest way of achiev-
ing a goal is the automatic response to a stimulus which oc-
curs in the third phase of learning. For example, if there is
a goal to solve the pyramid with base 8 and height 3, a pro-
duction (P1) can fire to immediately store the solution of that
pyramid in the imaginal buffer. Solving a particular pyra-
mid is represented by a single procedural skill, i.e. a sin-
gle production specific for that pyramid. Such productions
are formed by the production compilation mechanism and
strengthened by subsequent practice with the same pyramid.
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Table 1: Examples of Language Constructs Used in the Paper

expression rewrite rule anonymous function subscript notation
add,subtract,f add(2,3)->2 |add($1,$2)| get:pyramid[base]
add(2,3),p(b->8,h->3) b->8 |add($,3)| set:pyramid[sum->8]

Table 2: Representative Portion of the ACT-R Pyramid Model

Productions Facts Operators
P1: automatically respond to a goal (add 8 7 15) O1/O3:(set base/2 sum/count)
P2: retrieve a fact (decrement 3 2) O2:(subtract base 1 term)
P3: harvest retrieved fact (subtract 7 1 6) O4:(add term sum sum)
P4: retrieve an operator (increment 2 3) O7/O8:(decrement/increment term/count)
P5: interpret retrieved operator O5:(say sum); O6:iterate or respond

In phase 2 of learning, when there is no specialised produc-
tion for a given pyramid, a solution for that pyramid is re-
trieved from declarative memory. In that case, two produc-
tions, (P2) and (P3) fire, one which sends a declarative re-
quest and one which harvests it. Different from specific pro-
ductions from phase 3, productions from phase 2 are general
and can retrieve and harvest any declarative fact. In phase 1
of learning, retrieval fails as the given pyramid fact does not
yet have sufficient activation, and the pyramid task is solved
step by step by following instructions. We now show how
we model all three phases using functions defined as rewrite
rules. As automatic procedural skills and declarative knowl-
edge are fundamental and the simplest building blocks in
ACT-R theory necessary to model learning from instructions,
we start from phase 3 and gradually move towards phase 1.

Rewrite rules that transform a pyramid to its solution rep-
resent procedural knowledge used in phase 3. For example:

solvePyramid(base ->8,height ->3) ->21 (R1)

Analogously to ACT-R production rules, rewrite rules such as
(R1) are stored in procedural memory and have utility values.
Given a term, such as (T1), the interpreter matches it against
LHSs of all the rules in procedural memory. A matching rule
transforms the term. If multiple rules match, the one with
highest utility value is selected. As with production firing, it
takes 50ms to apply a rewrite rule stored in procedural mem-
ory. Up to this point, the main difference of the approach
relative to ACT-R is syntactic - rewrite rules are much like
overloaded functions from ordinary programming languages.
Contrary to ordinary interpreters, which are deterministic and
usually select the most specific overload of a function, our in-
terpreter selects an appropriate overload according to the as-
sumptions of the ACT-R theory. We show that using functions
instead of productions that operate on buffers with chunks al-
lows us to write cognitive models in a compositional way.

To model phase 2, we represent declarative knowl-
edge. In ACT-R, chunks represent declarative facts,
e.g. (solvePyramid 8 3 21) (F1). Fact (F1) and its pro-

cedural counterpart production (P1) contain exactly the same
knowledge. Conceptually, both are functions that take some
arguments and return a result. Procedural knowledge is stored
in procedural memory and interpreted directly by the ACT-R
interpreter while declarative knowledge is stored in declar-
ative memory and interpreted indirectly, through productions
similar to (P2) and (P3). Productions (P2) and (P3) act as em-
bedded (in ACT-R) interpreters of declarative knowledge. We
use the same representation for both declarative and procedu-
ral knowledge. For example, the declarative fact equivalent to
(F1), which can be retrieved in phase 2, is represented by the
same function (R1) as its procedural counterpart. Contrary
to procedural knowledge, declarative knowledge is stored in
declarative memory and rules in that memory have activa-
tions, analogously to ACT-R chunks. When there is a goal,
such as the one represented by the term (T1), the interpreter
first matches it against all the rules in procedural memory. If
no rule matches or if the utility of any matched rule is low (be-
cause the model is not yet in phase 3), the interpreter matches
the term against the rules in declarative memory. If no rule
matches or if the activation of any matched rule is low (be-
cause the model is still in phase 1), a model starts interpreting
instructions. Thus we free a modeller from writing generic
rewrite rules, equivalent to productions (P2) and (P3), whose
only purpose is to interpret declarative knowledge. We do not
imply that the skills represented by (P2) and (P3) are innate,
i.e. a part of the architecture (term rewriting interpreter in this
case). We simply consider the equivalent rewrite rules boiler-
plate code from the programming perspective. As the ability
to retrieve and harvest declarative knowledge is essential for
almost any cognitive skill, most modellers would probably
want those rules. In a future implementation, we will expose
that part of the interpreter as rules that can be removed or
customised, if desired.

To summarise, we represent both declarative and the cor-
responding procedural knowledge as functions stored in the
two distinct memories. In learning phase 2, the solution of
a problem is stored in declarative memory as a function that
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can be fetched and applied. In phase 3, the same function
is present in procedural memory and can be applied directly,
reflecting automatisation of the given skill. In ACT-R, tran-
sition between phases 2 and 3 is modelled as a production
compilation that collapses rules (P2) and (P3) into (P1). Note
that no such compilation is necessary in our approach as both
kinds of knowledge share exactly the same representation.
The given declarative knowledge is converted into procedural
by copying a corresponding function to the procedural mem-
ory. After copying, its utility can increase with subsequent
practice, as described in ACT-R theory.

In learning phase 1, a given problem is solved by follow-
ing the instructions encoded as declarative knowledge. In ad-
dition to instructions, declarative knowledge of other facts is
usually necessary, as shown in Table 2. We represent those
facts with functions stored in the declarative memory. For
example:

add(8,7) ->15 (R2)
decrement(3) ->2 (R4)
subtract(7,1) ->6 (R4)

Operators encode instructions. A typical operator consists of
an operation to be done, names of the slots from which ar-
guments are obtained and name of a slot that stores the re-
sult. An argument may be a concrete value instead of a slot
name. Table 2 shows the operators encoding the instructions
for solving a pyramid task. Production (P4) requests an op-
erator of the declarative module that can achieve the current
goal. The retrieved operator is executed. As there are differ-
ent possible kinds of actions, multiple productions are nec-
essary for executing each of those actions. We call this set
of productions (P5). Even though productions (P5) are spe-
cific to particular actions, they are still fairly generic as they
can be used in different domains. Dynamic pattern matching
(Anderson, 2007) is necessary to follow the instructions as
slot names to be matched against are not known in advance
and have to be read from the operators. In the same way (P2)
and (P3) can be seen as embedded interpreters of declara-
tive facts, (P4) and (P5) can be seen as embedded interpreters
of declarative operators. As with declarative facts, we im-
plement declarative operators as functions stored in declar-
ative memory and implicitly include rules that fetch and in-
terpret operators. Operators are higher order functions that
return a function. Primitive generic operators perform ba-
sic actions corresponding to reading, comparing and writing
slot values. These operators abstract over dynamic pattern
matching. Non-primitive operators are composed from prim-
itive operators and fact functions. A cognitive model is pro-
grammed as a set of operator functions composed in different
ways to achieve given goals. The acquisition of a skill can be
seen as ,,the composition of already-known component skills
in novel ways to enable the performance of new skills and
tasks” (Salvucci, 2013). The approach we introduce here can
thus be seen as an implementation of that view.

We abstract over dynamic pattern matching by using get,
set and equal functions. Function get takes a list of sub-

scripts and returns a function (getter) that takes an expression
and applies the subscripts to the expression. For example,
get(base) returns |$[base]|. Function set also takes a
list of subscripts, but it returns a function (setter) that takes
a list of values and an expression and returns an expression
with values stored at the subscripts. For example, set(term)
returns |$2[term->$1]|. Function equal takes a list of sub-
scripts and returns a function that tests whether the values at
given subscripts are equal or not. Function not is a standard
logic negation operator. Operator >> is a left-associative gen-
eralised function composition operator overloaded to work
with different kinds of functions and constants. Finally, we
define function update(s,f) as get(s)>>f>>set(s). Al-
though the implementation of the described constructs may
seem involved, writing cognitive models using these con-
structs is relatively easy. We express almost all the operators
from Table 2 as follows:

get(base)>>set(sum) (O1)
get(base)>>|subtract($,1)|>>set(term) (O2)
2>>set(count) (O3)
get(term ,sum)>>add>>set(sum) (O4)
get(sum)>>say (O5)
update(term ,decrement) (O7)
update(count ,increment) (O8)

add, subtract etc. are exactly the same functions used to
encode declarative knowledge. The main advantage of using
the unified function representation for all kinds of knowledge
is that we can build a cognitive model incrementally by hier-
archically composing functions starting from the most prim-
itive ones. Each intermediate function can be easily under-
stood and tested in isolation and reused in other cognitive
models. The only operator missing from the previous list
is (O6), which does not encode any action. Instead, it en-
codes an instruction to test whether height and count are
equal and decides to respond (fetch and execute (O5)) if they
are or repeat the sequence (O7-O8-O4) if they are not. We
express that kind of iteration by the while(condition,f)
function which repeatedly applies f as long as the condition
is true. With while, we express the remaining operator (O6)
as while(not(equal(height,count)),O7>>O8>>O4).

Finally, we compose the operators to express the en-
tire pyramid task: solvePyramid->O1>>...>>O4>>O6>>O5.
The resulting model is a function that can be further reused
and composed too. The solvePyramid function is not stored
in declarative memory as that would not be psychologically
plausible. Instead, it reflects the order in which instructions
are received, and we use the order to distribute the activation
to the individual operators. Fetching the operators based on
their activation is similar to the PRIMS approach (Taatgen,
2013). As we use rewrite rules to implement functions, we
can trace the execution steps of the model. By applying
cognitive interpretation to each step, using the principles de-
scribed above, we effectively get the same simulation as by
running the ACT-R model (Tenison et al., 2016), but with
all the benefits of functions. The model starts with rules
similar to (R2-R4) and operators (O1-O8) stored in declar-
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ative memory, much like the ACT-R model. When there is
a goal encoded by the term (T1) and there is no function
(R1) in the declarative memory, the model solves the prob-
lem by fetching and interpreting the appropriate operators.
Some operators, such as (O1), correspond to single produc-
tions and can be interpreted in a single step. Other opera-
tors require sub-goalling and hence correspond to multiple
productions that create sub-goals, fetch additional declarative
facts, and return to the main goal by trying to fetch it from
declarative memory after the subgoal is achieved. For exam-
ple, after execution of (O1-O3), the working memory con-
tains solvePyramid(base->8,height->3,term->7) (T2)
and the operator (O4) is fetched. The operator reads the ar-
guments supplied by get and passes them to add resulting
in the term add(8,7). This interprets as a subgoal and re-
sults in fetching (R2) from declarative memory and storing
(T2) in declarative memory. If (R2) is fetched and executed,
the interpreter retrieves and restores (T2) and stores the re-
sult of addition as encoded by set. To completely reproduce
the results of (Tenison et al., 2016), we interpret setting the
count and saying the result as motor actions performed by the
corresponding modules. We leave the details of implement-
ing motor actions as compositional functions for future work.
When a pyramid is solved, its solution is stored in declarative
memory as a function similar to (R1). Subsequent solving
of the same pyramid increases the activation of its declarative
function. When the activation is high enough, the model tran-
sitions to phase 2 and subsequently to phase 3. These tran-
sitions are similar to the equivalent transitions in the ACT-
R model. However, as we start from fine-grained primi-
tive functions rather than coarse-grained production rules, the
composition process also produces many intermediate func-
tions that can be reused in different models, as in PRIMs
(Taatgen, 2013). Behaviour similar to PRIMs arises naturally
as a consequence of using compositional functions and not as
a consequence of our intentional design.

Concluding Remarks

A number of alternatives to using low-level production sys-
tems in cognitive modelling have been suggested. (Paik, Kim,
& Ritter, 2010) divides those approaches in two groups: reim-
plementing existing languages in higher-level general pur-
pose languages (1), and creating completely new higher-level
languages specialised to writing cognitive models (2). A
more recent approach is to program cognitive models directly
in a general purpose high-level language by using a library
implemented in that language (Salvucci, 2016) (3). Our ap-
proach is somewhere between 2) and 3). It is based on a par-
ticular higher-level language and in that sense similar to 2).
Rather than defining special constructs for abstracting over
the low level features of a cognitive architecture (ACT-R in
this case), we model all aspects of cognition by first-order and
higher-order functions, implemented as rewrite rules. As a re-
sult, programming feels much like programming in a general-
purpose functional programming language, hence the similar-

ity with 3). The work reported here is preliminary and its pur-
pose is to introduce the approach to the cognitive modelling
community. We plan to further develop the language and ex-
plore its strengths and weaknesses by using it to develop real
world cognitive models. We also want to examine mentioned
similarity with PRIMS (Taatgen, 2013) in more detail. Cog-
nitive models implemented as term rewriting systems are ac-
tually algebraic structures. An interesting research question
we want to explore is if we can utilise those structures and a
number of formal methods based on term rewriting, to reason
about cognitive models on a more fundamental mathematical
level. Term rewriting is closely related to formal languages.
We want to further explore theoretical and practical aspects of
that relation in the context of cognitive modelling, what can
be of special interest to computational and cognitive linguists.
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Abstract
Speakers often refer to context only implicitly when using lan-
guage. The utterance “it’s warm outside” could signal it’s
warm relative to other days of the year or just relative to the
current season (e.g., it’s warm for winter). Warm vaguely con-
veys that the temperature is high relative to some contextual
comparison class, but little is known about how a listener de-
cides upon such a standard of comparison. Here, we formalize
how world knowledge and listeners’ internal models of speech
production can drive the resolution of a comparison class in
context. We introduce a Rational Speech Act model and de-
rive two novel predictions from it, which we validate using a
paraphrase experiment to measure listeners’ beliefs about the
likely comparison class used by a speaker. Our model makes
quantitative predictions given prior world knowledge for the
domains in question. We triangulate this knowledge with a
follow-up language task in the same domains, using Bayesian
data analysis to infer priors from both data sets.
Keywords: comparison class; pragmatics; Rational Speech
Act; Bayesian cognitive model; Bayesian data analysis

If it’s 75 ◦F (24 ◦C) outside, you could say “it’s warm.” If
it’s 60 ◦F (16 ◦C), you might not consider it warm. Unless
it’s January; it could be warm for January. Warm is relative,
and its felicity depends upon what the speaker uses as a basis
of comparison—the comparison class (e.g., other days of the
year or other days in January). Comparison classes are neces-
sary for understanding adjectives and, in fact, any part of lan-
guage whose meaning must be pragmatically reconstructed
from context, including vague quantifiers (e.g., “He ate a lot
of burgers.”; Scholler & Franke, 2015) and generic language
(e.g., “Dogs are friendly”; Tessler & Goodman, 2016a). The
challenge for listeners is that the comparison class often goes
unsaid (e.g., in “It’s warm outside.”).

The existence of comparison classes for understanding
vague language is uncontroversial (Bale, 2011; Solt, 2009).
Four-year-olds categorize novel creatures (pimwits) as either
“tall” or “short” depending on the distribution of heights of
pimwits and not the heights of creatures that are not called
pimwits, suggesting the comparison class in that context is
other pimwits (Barner & Snedeker, 2008). Adult judgments
of the felicity for adjectives like “dark” or “tall” similarly de-
pend upon fine-grained details of the statistics of the com-
parison class (Qing & Franke, 2014b; Schmidt, Goodman,
Barner, & Tenenbaum, 2009; Solt & Gotzner, 2012).

Any particular object of discourse, however, can be con-
ceptualized or categorized in multiple ways, giving rise to
multiple possible comparison classes. A day in January is
also a day of the year; if it’s warm, it could be warm for win-
ter or warm for the year. Why should one comparison class
be preferred over another? To our knowledge, this question
has not been addressed formally or empirically.1 We pro-

1Theoretical work in semantics has instead focused on how in-

pose that listeners actively combine category knowledge with
pragmatic considerations to infer the comparison class im-
plicitly used by the speaker. We introduce a minimal exten-
sion to the Rational Speech Act (RSA) model for gradable
adjectives (Lassiter & Goodman, 2013) to allow it to flexibly
reason about the implicit comparison class.

We derive two novel qualitative predictions from this
model. Saying “it’s warm” in winter should signal it’s warm
for winter (as opposed to for the year) more so than saying
“it’s cold”. The opposite relationship should hold in summer,
where “it’s cold” should signal it’s cold for summer more so
than “it’s warm”. This prediction is driven by the a priori
probability that the adjective could apply to the class (e.g.,
the probability that a given day in winter is warm; Predic-
tion 1). In addition, regardless of the season and the adjective
form (e.g., “warm” or “cold”), listeners who expect speakers
to be informative will prefer classes that are relatively specific
(e.g., relative to the current season as opposed to the whole
year), as they carry more information content (Prediction 2).
We test these predictions by eliciting the comparison class
using a paraphrase dependent measure (Expt. 1).

As with any Bayesian cognitive model, explicitly speci-
fying relevant prior knowledge (e.g., beliefs about tempera-
tures) is necessary for the model to make quantitative pre-
dictions. The current methodological standard is to measure
beliefs by having participants estimate quantities or give like-
lihood judgments (Franke et al., 2016). We pursue a different
methodology. The RSA model captures a productive frag-
ment of natural language; thus, it makes predictions about a
related natural language task (Expt. 2). Critically, we can use
the model to predict natural language judgments that require
the same prior knowledge as in Expt. 1 and use Bayesian
data analysis to jointly infer the shared priors. This approach
harnesses the productivity of language into experiment de-
sign and allows us to reconstruct priors without having par-
ticipants engage in challenging numerical estimation tasks.

Understanding comparison classes
Adjectives like warm and cold are vague descriptions of an
underlying quantitative scale (e.g., temperature). The vague-
ness and context-sensitivity of these adjectival utterances can
be modeled using threshold semantics ([[u]] = x > θ, for ut-
terance u, scalar degree x, and threshold θ), where the thresh-
old is probabilistically set with respect to a comparison class
c via pragmatic reasoning (Lassiter & Goodman, 2013; see
also Qing & Franke, 2014a):

formation from a comparison class is used and what representations
might be preferred (Bale, 2011; Solt, 2009).
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L1(x,θ | u) ∝ S1(u | x,θ) ·Pc(x) ·P(θ) (1)
S1(u | x,θ) ∝ exp(α1 · lnL0(x | u,θ)) (2)
L0(x | u,θ) ∝ δ[[u]](x,θ) ·Pc(x) (3)

This is a Rational Speech Act (RSA) model, a recursive
Bayesian model where speaker S and listener L coordinate on
an intended meaning (for a review, see Goodman & Frank,
2016). In this framework, the pragmatic listener L1 tries to
resolve the state of the world x (e.g., the temperature) from
the utterance she heard u (e.g., “it’s warm”). She imagines
the utterance came from an approximately rational Bayesian
speaker S1 trying to inform a naive listener L0, who in turn
updates her prior beliefs Pc(x) via an utterance’s literal mean-
ing [[u]](x). Lassiter & Goodman (2013) introduced into RSA
uncertainty over a semantic variable: the truth-functional
threshold θ (Eq. 1). θ comes from an uninformed prior and
is resolved by the listener by reasoning about the likely states
of the world Pc(x) (e.g., possible temperatures) and the likeli-
hood that a speaker would say the adjective given a state and a
threshold S(u | x,θ). The prior distribution over world-states
Pc(x) is always relative to some comparison class c (Eqs. 1 &
3) but where does the comparison class come from?

When a listener hears only that “it’s warm outside” without
an explicit comparison class (e.g., “. . . for the season”), we
posit the listener infers the comparison class using her world
knowledge of what worlds are plausible given different com-
parison classes P(x | c), what comparison classes are likely
to be talked about P(c), and how a rational speaker would
behave in a given world and comparison class S1(u | x,c,θ)
(Eq. 4). As a first test of this idea, we consider an idealized
case where the comparison class can be either a relatively spe-
cific (subordinate) or relatively general (superordinate) cate-
gorization (e.g., warm relative to days in winter or relative
to days of the year). Crucially in this situation, the listener
is aware that the target entity is a member of the subordinate
class (e.g., aware that it is winter) and draws likely values of
the degree (e.g., temperature) from the subordinate class prior
P(x | csub). With these assumptions, the model becomes:

L1(x,c,θ | u) ∝ S1(u | x,c,θ) ·P(x | csub) ·P(c) ·P(θ) (4)
S1(u | x,c,θ) ∝ exp(α1 · lnL0(x | u,c,θ)) (5)
L0(x | u,c,θ) ∝ δ[[u]](x,θ) ·P(x | c) (6)

We are interested in the behavior of the model with the un-
derspecified utterance (e.g., “It’s warm”), and we assume the
speaker has two alternative utterances in which the compari-
son class is explicit (e.g., “It’s warm relative to other days in
winter.” and “It’s warm relative to other days of the year.”).
The predictions of this model depend on the details of the lis-
tener’s knowledge of the subordinate and superordinate cate-
gories: P(x | csub) and P(x | csuper), as well as the prior distri-
bution on comparison classes P(c) in Eq. 4.

Comparison class prior P(c) reflects listeners’ expecta-
tions of what classes are likely to be discussed. As a proxy

for comparison class usage frequency, we use empirical fre-
quency f̂ estimated from the Google WebGram corpus2, and
scale it by a free parameter β such that P(c) ∝ exp(β · log f̂ ).

Degree priors (World knowledge) Only the relative val-
ues for P(x | csub) and P(x | csuper) affect model predictions.
Hence we fix each superordinate distribution to be a stan-
dard normal distribution P(x | csuper) = N (0,1) and the sub-
ordinate priors to also be Gaussian distributions P(x | csub) =
N (µsub,σsub); the subordinate priors thus have standardized
units. We will eventually infer the parameters of the subordi-
nate priors from experimental data.
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Figure 1: Left: Three hypothetical subordinate class prior
distributions over a degree (fixing the superordinate class to
be a unit-normal distribution, in grey). Right: Predicted lis-
tener inferences for an intended subordinate class interpreta-
tion given positive and negative form adjectives with different
subordinate degree priors.

Qualitative model predictions Figure 1 (left) shows
schematic superordinate and subordinate priors; e.g., tem-
peratures over the whole year (super), in winter (low), fall
(medium), and summer (high). The subordinate distributions
have lower variance than the superordinate, and the “low” and
“high” distributions have different means (e.g., temperatures
in winter are expected to be lower and have lower variance
than temperatures over the whole year).

Two intuitions explain the inferences of the pragmatic lis-
tener model (shown in Figure 1 right). First, certain classes
are more or less likely to have an adjective felicitously apply.
For example, any given day in winter is less likely to be warm
than cold. Thus, hearing “it’s warm” (a positive-form adjec-
tive) in winter (low prior) will signal it’s warm for winter (the
subordinate class) more so than hearing “it’s cold” (negative-
form), because it’s more likely to be true (Prediction 1).

2Corpus accessed via https://corpora.linguistik.
uni-erlangen.de/cgi-bin/demos/Web1T5/Web1T5_freq.
perl. Due to potential polysemy and idiosyncracies of our exper-
imental materials (Table 1), we made the following substitutions
when querying the database for emprical frequency: produce →
“fruits and vegetables”; things you watch online→ “online videos”;
days in {season} → “{season} days”; dishwashers→ “dishwashing
machines”; videos of cute animals→ “animal videos”.
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Scale (adjectives) Subordinate classes Superordinate
Height (tall, short) (professional) gymnast, soccer player, basketball player people
Price (expensive, cheap) bottle opener, toaster, dishwasher kitchen appliances
Temperature (warm, cold) winter, fall, summer (day in Maryland) days in the year
Time (long, short) video of a cute animal, music video, movie things you watch online
Weight (heavy, light) grape, apple, watermelon produce

Table 1: Items used in Experiments 1 and 2. Subordinate categories were designed to fall near the low end, high end, and
somewhere in the middle of the degree scale

Second, the amount of information conveyed by a vague ut-
terance depends upon the variability in the comparison class.
Comparison classes that have higher variance will result in
relatively less information gain by the listener. All else be-
ing equal, listeners will prefer lower variance (e.g., subordi-
nate) comparison classes because they are more informative
(Prediction 2). Figure 1 (right) shows that subordinate class
interpretations are above baseline regardless of the adjective
polarity (positive or negative) or the mean of the subordinate
prior (low, medium, high).

In sum, we see two predictions: The pragmatic listener
overall prefers subordinate comparison classes, though the
extent of this preference is modulated by the a priori prob-
ability that the adjective is true of the subordinate category.
We test these two predictions in our first experiment.

Overview of data analytic approach As described above,
specifying the relevant prior knowledge yields two free pa-
rameters per subordinate class. We will put priors over these
parameters and infer their likely values using Bayesian data
analysis. The data from the comparison class experiment
(Expt. 1) would be insufficient, however, to reliably estimate
all of the parameters of this data analytic model. To allevi-
ate this, we use the same RSA model to predict additional
data about related language use in the same domains (Expt.
2). Specifically, we gather judgments about adjectives when
the comparison class is explicit: whether or not an adjective
would apply to a subordinate member explicitly relative to the
superordinate category (e.g., Is a day in winter warm relative
to other days of the year?).

To model Expt. 2 data, we remove comparison class un-
certainty by setting P(csuper) = 1, since the sentences provide
an explicit comparison to the superordinate class. We model
sentence endorsement using a pragmatic speaker (following
Qing & Franke, 2014a; Tessler & Goodman, 2016a, 2016b):

S2(u | csub) ∝ exp(α2 ·Ex∼Pcsub
lnL1(x | u)) (7)

Note that L1(x | u) is defined from Eq. 4 by marginalization.
Eqs. 4 and 7 define models for the data we will gather from

Expts. 1 and 2, and depend on the same background knowl-
edge P(x | c). We can thus use data from both experiments
to jointly reconstruct the shared prior knowledge and gener-
ate predictions for the two data sets. Experimental paradigms,
computational models, preregistration report, and data for this
paper can be found at https://mhtess.github.io.

Behavioral experiments
Experiment 1 tests the qualitative predictions of the model.
Experiment 2 collects further data about adjective usage in
order to constrain the quantitative predictions of the RSA
model, which will be used to predict data from both exper-
iments. The materials and much of the design of the two ex-
periments are shared. Participants were recruited from Ama-
zon’s Mechanical Turk and were restricted to those with U.S.
IP addresses with at least a 95% work approval rating. Each
experiment took about 5 minutes and participants were com-
pensated $0.50 for their work.

Materials We used positive- and negative-form gradable
adjectives describing five scales (Table 1). Each scale was
paired with a superordinate category, and for each superor-
dinate category, we used three subordinate categories that
aimed to be situated near the high-end, low-end, and inter-
mediate part of the degree scale (as in Figure 1 left). This
resulted in 30 unique items ({3 subordinate categories} x {5
scales} x {2 adjective forms}). Each participant saw 15 tri-
als: one for each subordinate category paired with either the
positive or negative form of its corresponding adjective. Par-
ticipants never judged the same subordinate category for both
adjective forms (e.g., cold and warm winter days) and back-
to-back trials involved different scales to avoid fatigue.

Experiment 1: Comparison class inference
In this experiment, we gather human judgments of compari-
son classes in ambiguous contexts, testing the two predictions
described in Qualitative Model Predictions.

Participants and procedure We recruited 264 participants
and 2 were excluded for failing an attention check. On each
trial, participants were given a context sentence to introduce
the subordinate category (e.g., Tanya lives in Maryland and
steps outside in winter.). This was followed by an adjec-
tive sentence, which predicated either a positive- or negative-
form gradable adjective over the item (e.g., Tanya says to
her friend, “It’s warm.”). Participants were asked “What do
you think Tanya meant?” and given a two-alternative forced-
choice to rephrase the adjective sentence with either an ex-
plicit subordinate or superordinate comparison class:

{She / He / It} is ADJECTIVE (e.g., warm) relative to
other SUBORDINATES (e.g., days in winter) or SUPER-
ORDINATES (e.g., days of the year)
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Figure 2: Empirical comparison class data, inferred world priors, and empirically derived comparison class priors. Top: Ex-
periment 1 results. Comparison class judgments in terms of proportion judgments in favor of subordinate comparison class.
Middle: Inferred prior distributions of world knowledge used to model Experiment 1 and 2 data. Bottom: Inferred prior prob-
ability of the subordinate comparison classes based on Google WebGram frequencies. Error bars correspond to 95% Bayesian
credible intervals (for bottom plot, derived from the posterior on the β scale parameter).

In addition to all of the above design parameters, half of
our participants completed trials where an additional sentence
introduced the superordinate category at the beginning (e.g.,
Tanya lives in Maryland and checks the weather every day.),
with the intention of making the superordinate paraphrase
more salient.

Results We observed no systematic differences between
participants’ responses when the superordinate category was
previously mentioned in the context and those when it was
not; thus, we collapse across these two conditions for all
analyses. Figure 2 (top) shows the proportion of participants
choosing the subordinate paraphrase for each item, reveal-
ing considerable variability both within- and across- scales.
The predicted effects are visually apparent within each scale
(compare with Figure 1 right).

Our qualitative predictions are confirmed using a general-
ized linear mixed effects model with main effects of adjective
form (positive vs. negative) and the a priori judgment by the
first author of whether the sub-category was expected to be

low or high on the degree scale, and of critical theoretical
interest, the interaction between these two variables. In addi-
tion, we included by-participant random effects of intercept
and by-subordinate category random effects of intercept and
iteraction between form and strength3. Confirming our two
qualitative model predictions, there was an interaction be-
tween form and strength (β =−3.75; SE = 0.58; z =−6.49)
and there was an overall preference for subordinate category
paraphrases (β = 1.21; SE = 0.37; z = 3.27). The main ef-
fects of form and strength were not significant.

We then test the simple effects. For items low on the degree
scale (e.g., temperatures in winter), positive form adjectives
were significantly more likely to imply subordinate compar-
ison classes (β = 1.41; SE = 0.15; z = 9.43), while the op-
posite is true for items high on the scale (e.g., summer days;
β =−2.5; SE = 0.19; z =−13.15). Participants reason prag-
matically to resolve the comparison class, combining world
knowledge with informativity as predicted by our model.

3This was the maximal mixed-effects structure that converged.
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Figure 3: Human endorsement of subordinate comparison class paraphrases (middle; Expt. 1) and adjective sentences (left;
Expt. 2) as a function of listener model L1 and speaker model S2 predictions, respectively. The right facet displays a subset
of the paraphrase data (Expt. 1) to reveal good quantitative fit even in a small dynamic range. Error bars correspond to 95%
Bayesian credible intervals.

Experiment 2: Adjective endorsement
In this experiment, we collected data about adjective endorse-
ment that would require the same prior knowledge relevant
for Expt. 1. We use this data to further constrain the RSA
model’s quantitative predictions.

Participants and procedure We recruited 100 participants
and 5 were excluded for failing an attention check. On each
trial, participants were given a sentence introducing the sub-
ordinate category (e.g., Alicia lives in Maryland and steps
outside in winter.). This was followed by a question asking if
the participant would endorse an adjective explicitly relative
to the superordinate category (e.g., Do you think the day in
winter would be warm relative to other days of the year?).

Results The judgments in this experiment were consistent
with the a priori ordering of the subordinate categories on
the degree scale. On the y-axis of Figure 3 (left), we see
that the endorsement of adjectival phrases in these domains
is markedly more categorical than the comparison class infer-
ence task (compare vertical spread of left and middle facets).

Full model analysis and results
The RSA listener (Eq. 4) and speaker (Eq. 7) models make
quantitative predictions about comparison class interpretation
and adjective endorsement, respectively. We construct a sin-
gle data-analytic model with each of these RSA components
as sub-models in order to make quantitative predictions about
the data from both of our experiments.

The listener and speaker sub-models share their prior world
knowledge P(x | c) (e.g., temperatures in winter), described
in the Degree Priors section. We put the same priors
over the parameters of each subordinate distribution: µ ∼
Uniform(−3,3), σ ∼ Uniform(0,5), since they have stan-
dardized units. The comparison class prior P(c) in Eq. 4

scales the empirical frequency f̂ by a free parameter, which
we give the following prior: β∼ Uniform(0,3).

The full model has three additional parameters not of direct
theoretical interest: the speaker optimality parameters α

expt
i ,

which can vary across the two tasks. The pragmatic listener
L1 model (Eq. 4) has one speaker optimality: α1

1. The prag-
matic speaker S2 model (Eq. 7) has two speaker optimality
parameters: {α2

1,α
2
2}. We use priors consistent with the pre-

vious literature: α1 ∼ Uniform(0,20), α2 ∼ Uniform(0,5)
We implemented the RSA and Bayesian data analysis

models in the probabilistic programming language WebPPL
(Goodman & Stuhlmuller, 2014). To learn about the credible
values of the parameters, we collecting 2 chains of 50k itera-
tions (after 25k burn-in) using an incrementalized version of
MCMC (Ritchie, Stuhlmuller, & Goodman, 2016).

Results The full model’s posterior over the RSA and data-
analytic parameters were consistent with prior literature and
intuition. The maximum a-posteriori (MAP) estimate and
95% highest probability density (HPD) intervals for model
parameters specific to the L1 model used for Expt. 1 were
α1

1 = 1.6[1.1,2.5], β = 0.13[0.11,0.19]. Model parameters
specific to the S2 model used for Expt. 2: α2

1 = 3.5[0.6,13.2],
α2

2 = 3.2[2.6,3.8]. The inferred distributions corresponding
to subordinate class priors were consistent with the a pri-
ori ordering of these subordinate classes (low, medium, high)
used in these tasks (Figure 2 middle).

Finally, the full model’s posterior predictive distribution
does an excellent job at capturing the quantitative variabil-
ity in responses for Expt. 1: r2(30) = 0.965, and Expt. 2:
r2(30) = 0.985 (Figure 3). Because of the overall preference
for the subordinate comparison class, many of the data points
are distributed above 0.5. Even for these fine-grained differ-
ences, the model does a good job at explaining the quantita-
tive variability in participants’ data (Figure 3 right).
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Discussion
The words we say are often too vague to have a single, precise
meaning and only make sense in context. Context, however,
can also be underspecified, as there are many possible dimen-
sions or categories that a speaker might be implicitly referring
to or comparing against. Here, we investigate the flexibility in
the class against which an entity can be implicitly compared.

We introduced a minimal extension to an adjective inter-
pretation Rational Speech Act model to allow it to flexibly
reason about the comparison class. This model made two
novel predictions about how listeners should prioritize one
class over another. It also made quantitative predictions about
how background knowledge about the degree scale should in-
form this inference in a graded fashion. Both qualitative pre-
dictions of the model were borne out in our first experiment,
and the quantitative predictions were confirmed using a novel
data analytic technique. To our knowledge, this is the first ex-
periment to demonstrate how reference classes for adjective
interpretation can adjust based on world knowledge.

We observe in our modeling results for Expt. 1 that a uni-
form prior distribution over the experimentally supplied com-
parison class alternatives is unlikely (Figure 2 bottom). For
example, the comparison class of “people” for heights of indi-
viduals is relatively more salient than the class of “produce”
for the weights of fruits and vegetables. We used the fre-
quency of the class in a corpus as a proxy for their prior prob-
ability P(c), which was sufficient to account for differences
in baseline class probability both between- and within-scales.

Corpus frequency is a composite measurement of factors
relevant for speech production. Its utility in this model sug-
gests that utterances without an explicit comparison class
(e.g., “It’s warm outside”) may in fact be incomplete sen-
tences, in a way analogous to sentence fragments studied
in noisy-channel models of production and comprehension
(Bergen & Goodman, 2015). Another (non-mutually exclu-
sive) possibility is that the comparison class prior reflects
basic-level effects in categorization (Rosch & Mervis, 1975).
Future work should attempt to understand these factors to
construct a more complete theory of the comparison class
prior.

The second contribution of this paper is a novel data-
analytic approach, where prior knowledge used in the
Bayesian language model is reconstructed from converging
evidence gathered from related language experiments. In pre-
vious work, we have attempted to measure prior knowledge
by decomposing what would be a single, implicitly multi-
layered, numerical estimation question into multiple simpler
questions. Then, we construct a Bayesian data analytic model
to back out the prior knowledge (Tessler & Goodman, 2016a,
2016b). We extend this approach by using the same core RSA
model to model behavior across two language experiments.
The major feature of this method is that participants respond
only to simple, natural language questions rather than esti-
mating numerical quantities for which complicated linking
functions must be designed (e.g., Franke et al., 2016). The

fully Bayesian language approach we pioneer here also pro-
vides a further constraint on the language model, which must
predict data from two similar but distinct language experi-
ments. The productivity of natural language can thus be har-
nessed to productively design experiments that further con-
strain and test computational models of language and cogni-
tion.

Acknowledgements
The authors would like to thank Ali Horowitz for help in stim-
uli design. This work was supported in part by NSF Grad-
uate Research Fellowship DGE-114747 to MHT, a Stanford
CSLI Summer Internship for MLB, and a Sloan Research Fel-
lowship, ONR grant N00014-13-1-0788, and DARPA grant
FA8750-14-2-0009 to NDG.

References
Bale, A. C. (2011). Scales and comparison classes. Natural Lan-

guage Semantics, 19(2), 169–190.
Barner, D., & Snedeker, J. (2008). Compositionality and statistics in

adjective acquisition: 4-year-olds interpret tall and short based on
the size distributions of novel noun referents. Child Development,
79(3), 594–608.

Bergen, L., & Goodman, N. D. (2015). The strategic use of noise in
pragmatic reasoning. Topics in Cognitive Science, 7(2), 336–350.

Franke, M., Dablander, F., Scholler, A., Bennett, E., Degen, J.,
Tessler, M. H., . . . Goodman, N. D. (2016). What does the crowd
believe ? A hierarchical approach to estimating subjective beliefs
from empirical data. In Proceedings of the 38th annual meeting
of the cognitive science society.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language inter-
pretation as probabilistic inference. Trends in Cognitive Sciences,
20(11), 818–829.

Goodman, N. D., & Stuhlmuller, A. (2014). The Design and Im-
plementation of Probabilistic Programming Languages. http:
//dippl.org.

Lassiter, D., & Goodman, N. D. (2013). Context, scale structure,
and statistics in the interpretation of positive-form adjectives. In
Semantics and linguistic theory (Vol. 23, pp. 587–610).

Qing, C., & Franke, M. (2014a). Gradable adjectives, vagueness,
and optimal language use: A speaker-oriented model. In Seman-
tics and linguistic theory (Vol. 24, pp. 23–41).

Qing, C., & Franke, M. (2014b). Meaning and Use of Gradable Ad-
jectives: Formal Modeling Meets Empirical Data. In Proceedings
of the 36th annual conference of the cognitive science society.

Ritchie, D., Stuhlmuller, A., & Goodman, N. D. (2016). C3:
Lightweight incrementalized mcmc for probabilistic programs us-
ing continuations and callsite caching. In AISTATS 2016.

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies
in the internal structure of categories. Cognitive Psychology, 7(4),
573–605.

Schmidt, L. A., Goodman, N. D., Barner, D., & Tenenbaum, J. B.
(2009). How Tall Is Tall? Compositionality, Statistics, and Grad-
able Adjectives. In Proceedings of the 31st annual conference of
the cognitive science society.

Scholler, A., & Franke, M. (2015). Semantic values as latent param-
eters: Surprising few & many. In Semantics and linguistic theory
(Vol. 25, pp. 143–162).

Solt, S. (2009). Notes on the Comparison Class. In International
workshop on vagueness in communication.

Solt, S., & Gotzner, N. (2012). Experimenting with degree. In
Semantics and linguistic theory (Vol. 22, pp. 166–187).

Tessler, M. H., & Goodman, N. D. (2016a). A pragmatic theory of
generic language. ArXiv Preprint ArXiv:1608.02926.

Tessler, M. H., & Goodman, N. D. (2016b). Communicating gener-
alizations about events. In Proceedings of the 38th annual meet-
ing of the cognitive science society.

198

http://dippl.org
http://dippl.org


Degrees of Separation in Semantic and Syntactic Relationships
Matthew A. Kelly (matthew.kelly@psu.edu), David Reitter (reitter@psu.edu)

The Pennsylvania State University, University Park, PA

Robert L. West (robert.west@carleton.ca)
Carleton University, Ottawa, ON, Canada

Abstract
Computational models of distributional semantics can ana-
lyze a corpus to derive representations of word meanings in
terms of each word’s relationship to all other words in the cor-
pus. While these models are sensitive to topic (e.g., tiger and
stripes) and synonymy (e.g., soar and fly), the models have
limited sensitivity to part of speech (e.g., book and shirt are
both nouns). By augmenting a holographic model of semantic
memory with additional levels of representations, we present
evidence that sensitivity to syntax is supported by exploiting
associations between words at varying degrees of separation.
We find that sensitivity to associations at three degrees of sep-
aration reinforces the relationships between words that share
part-of-speech and improves the ability of the model to con-
struct grammatical sentences. Our model provides evidence
that semantics and syntax exist on a continuum and emerge
from a unitary cognitive system.
Keywords: semantic memory; mental lexicon; distributional
semantics; word embeddings; holographic models; cognitive
models; semantic space; part-of-speech; language production

Introduction
How do humans acquire, produce, and comprehend lan-
guage? To what extent does language require a specialized
cognitive capacity? And to what extent do humans learn
language the same way that humans learn any other skill,
whether it is learning to play chess or to play a piano piece?

Computational cognitive models provide a means of inves-
tigating the extent to which basic cognitive functions play
a role in language. Computational models of learning and
memory have been able to account for a variety of psycholin-
guistic phenomena without any a priori linguistic knowledge.

Linguistics distinguishes lexical knowledge (describing
words) from syntactic processes (describing how words are
combined to form sentences). We modify an existing com-
putational model of the acquisition of lexical knowledge to
enhance its ability to provide an integrated account of the ac-
quisition of syntactic knowledge.

Our model, the Hierarchical Holographic Model (HHM),
is based on BEAGLE (Jones & Mewhort, 2007). BEAGLE is
a distributional semantics model that uses holographic mem-
ory (Plate, 1995). Distributional models infer the meaning of
words from how the words co-occur in a corpus. BEAGLE’s
algorithm is not specific to language and has been applied to
recognition memory (Kelly, Kwok, & West, 2015), learning
a decision-making task, math cognition, and playing simple
games (Rutledge-Taylor, Kelly, West, & Pyke, 2014).

Building on work by Grefenstette (1994), we define or-
ders of association as a measure of the relationship between
words. This notion is related to degrees of separation, a mea-
sure of the distance between two nodes in a connected graph.

First-order (direct) associations are useful for detecting
words that are related in topic (e.g., tiger and stripes) and
second-order associations are useful for detecting words that
have a degree of synonymy (e.g., tiger and lion). Distribu-
tional semantics models, such as BEAGLE, are sensitive to
both first and second-order associations.

Distributional models are weakly sensitive to part-of-
speech (e.g., book and shirt are nouns). In the semantic space
of distributional models, words tend to cluster by part-of-
speech, such that, using a classifier, these models can be used
for automated part-of-speech tagging (e.g., Tsuboi, 2014).

Distributional models are not, strictly speaking, sensitive
to these clusters, it is the work of the classifier to detect them.
While all words in a cluster will be similar to some other
words in the cluster, there may be words in the cluster that are
entirely dissimilar to each other. This is because similarity is
not transitive. These clusters are evidence of higher-order as-
sociations that all words in the cluster have to all other words
in the cluster. Thus, we propose a variant of BEAGLE that is
sensitive to arbitrarily indirect associations. This allows us to
explore how higher-order associations can be utilized to im-
prove on the ability of computational models of distributional
semantics to infer syntactic information from a corpus.

Our Hierarchical Holographic Model is not a model of syn-
tax or semantics per se, as it does not produce or compre-
hend utterances. However, HHM generates representations
that capture knowledge of how a word is used, what words it
can be used with, and how those words should be sequenced
to form a grammatical utterance. HHM’s representations can
be situated in and utilized by a model that operates at the
utterance level (e.g., Johns, Jamieson, Crump, Jones, & Me-
whort, 2016). The objective of this research is to provide a
foundation for a single system account of the acquisition of
semantic and syntactic lexical knowledge that is based on a
general-purpose computational model of human memory.

In this paper, we explain the theory and mechanics of the
Hierarchical Holographic Model and show how the model
can be used to learn part of speech relations between words
and to order words into grammatical sentences. In sum, we
present contributions to a theory of human memory, describe
a computational model based on that theory, and evaluate the
model on human linguistic behavior.

Theory
In what follows, we define orders of association as a mea-
sure of the relationship between a pair of words in memory.
We describe the BEAGLE model of distributional semantics
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Table 1: Example of a third order association between eagles and birds.

Sentences
eagles soar over trees airplanes soar through skies dishes are over plates squirrels live in trees
birds fly above forest airplanes fly through skies dishes are above plates squirrels live in forest

(Jones & Mewhort, 2007), based on the holographic model
of memory (Plate, 1995). We then propose the Hierarchical
Holographic Model (HHM), a variant of BEAGLE capable of
detecting arbitrarily high orders of association.

Orders of Association

Imagine a graph where each word in the lexicon is a node con-
nected to other words. A pair of words are connected once for
each time they have occurred in the same context. In human
cognition, that context is defined by the limited capacity of
working memory. In our model, the context is a window of 5
to 10 words to the left and right of the target word. Order of
association is the length of a path between two words in the
graph. The strength of that order of association is the number
of paths of that length between the two words.

First order association is when two words appear to-
gether. In the sentence “eagles soar over trees”, the words ea-
gles and trees have first order association. Words with strong
first order association (i.e., frequently appear together) are of-
ten related in topic, such as the words tiger and stripes.

Second order association is when two words appear with
the same words. In the sentences “airplanes soar through
skies” and “airplanes fly through skies”, soar and fly have
second order association. Words with strong second order as-
sociation are often synonyms.

Third order association is when two words appear with
words that appear with the same words. Given the sentences
in Table 1, the words eagles and birds have neither first nor
second order association, but do have third order association.

Fourth order and higher One can keep abstracting to
higher orders of association indefinitely. Eventually, all
words are related to all other words in the language.

No association A pair of words with no path between them
have no association of any order. For an agent that knows
only the eight sentences in Table 1 as well as a ninth sentence
“cars drive on streets”, the words car and eagle have no as-
sociation. In real language data, two words will only have no
association if they belong to two different languages.

The definition of orders of association that we provide here
is an application of the concept of degrees of separation in
a network to words in a language, and is a generalization
of Grefenstette (1994)’s first-order, second-order, and third-
order affinities between words.

According to Barceló-Coblijn, Corominas-Murtra, and
Gomila (2012), the point at which a child transitions from
speaking in utterances of one or two words to speaking in
full sentences is the point at which the child’s knowledge of

the relationships between words forms a dense ”small world”
graph, typical of an adult vocabulary, where all words are sev-
eral steps from all other words in the graph. We hypothesize
that learning these longer range connections between words
is necessary to construct novel syntactic utterances.

To define orders of association, we have described the lex-
icon as a connected graph. This graph is not explicitly rep-
resented by the computational models we use. The BEAGLE
model defines a space rather than a graph, where words are
points in space. Words close together in BEAGLE’s space
have strong second-order association. Our Hierarchical Holo-
graphic Model (HHM) extends BEAGLE by defining a space
for each order of association. Level 1 of HHM is BEAGLE,
Level 2 represents third-order associations as distance, Level
3 represents fourth-order associations, and so on.

Previous computational models that detect third-order as-
sociations (or higher) have been clustering or classification
algorithms applied to words organized in a space of second-
order associations (e.g., Grefenstette, 1994; Tsuboi, 2014).
Conversely, HHM recursively applies the memory and learn-
ing principles it uses to detect second order associations to de-
tect higher order associations. As such, even at higher-orders,
HHM does not produce discrete categories corresponding to
noun, verb, adverb, etc., but instead produces graded repre-
sentations of lexical syntactic relationships.

We expect that fourth-order associations may be sufficient
to capture syntactic relationships. In a semantic network con-
structed from English word co-occurrence, the average mini-
mum path length between any pair of words is between 3 and
6, depending on how the network is constructed (Steyvers &
Tenenbaum, 2005). As such, we expect that by Level 3 of
HHM, many words will be related to half the lexicon.

The BEAGLE Model
In the BEAGLE model of semantic memory (Jones & Me-
whort, 2007), each word is represented by two vectors: an
environment vector that represents the percept of a word and
a memory vector that represents the concept of a word.

An environment vector (denoted by e) stands for what a
word looks like in writing or sounds like when spoken. For
simplicity, we chose not to simulate the visual or auditory
features of words (but see Cox, Kachergis, Recchia, & Jones,
2011 for a version of BEAGLE that does simulate these fea-
tures). Instead, we generate the environment vectors using
random values, as in (Jones & Mewhort, 2007). In our simu-
lations, environment vectors are generated by randomly sam-
pling values from a Gaussian distribution with a mean of zero
and a variance of 1/n, where n is the dimensionality. These
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dimensions are meaningless, only the relationships between
vectors are meaningful. The number of dimensions, n, deter-
mines the fidelity with which BEAGLE stores the word co-
occurrence data, such that smaller n yields poorer encoding.

Memory vectors (denoted by m) represent the associations
a word has with other words. Memory vectors are constructed
as the model reads the corpus. Memory vectors are holo-
graphic in that they use circular convolution (denoted by ∗) to
compactly encode associations between words (Plate, 1995).
Given a sentence, for each word in the sentence, vectors rep-
resenting all sequences of words in the sentence (or grams)
that include the target word are summed together and added
to the target word’s memory vector.

For example, given the sentence, “eagles soar over trees”,
we update the memory vectors for each word in the sentence:
eagles, soar, over, and trees. Each memory vector is updated
with a sum of grams. The memory vector for the word soar,
msoar, is updated with the bigrams “eagles soar” and “soar
over”, the trigrams “eagles soar over” and “soar over trees”,
and the tetragram “eagles soar over trees”.

Each gram is constructed as a convolution of the environ-
ment vectors of the constituent words, except for the target
word, which is represented by the placeholder vector (de-
noted by φ). The placeholder vector is randomly generated
and serves as a universal retrieval cue. With the placeholder
substituted for the target word, each gram can be understood
as a question to which the target word is the answer. So,
rather than adding a representation of “eagles soar over” in
msoar, we instead add “eagles ? over”, i.e., “What was the
word that appeared between eagles and over?”. Each mem-
ory vector can be understood as the sum of all questions to
which that memory vector’s word is an appropriate answer.

For example, given “eagles soar over trees”, we add “ea-
gles ?”, “? over”, “eagles ? over”, “? over trees”, and “eagles
? over trees” to msoar as follows:

msoar,t+1 = msoar,t + Pbefore(eeagles) ∗ φ + Pbefore(φ)

∗ eover + Pbefore(Pbefore(eeagles) ∗ φ)

∗ eover + Pbefore(Pbefore(φ) ∗ eover) ∗ etrees

+Pbefore(Pbefore(Pbefore(eeagles)∗φ)∗eover)∗etrees

(1)

where t is the current time step, all vectors m, e, and φ have
n dimensions, and Pbefore is a permutation matrix used to in-
dicate that a word occurred earlier in the sequence. Pbefore
is constructed by randomly permuting the rows of the n x n
identity matrix. Multiplying a vector v by Pbefore results in
the permuted vector Pbeforev.

While BEAGLE is a model of lexical semantics, vari-
ants of BEAGLE have been applied to non-linguistic mem-
ory and learning tasks, such as learning sequences of ac-
tions for strategic game play (Rutledge-Taylor et al., 2014).
We previously proposed a variant of BEAGLE (Kelly et al.,
2015) that learns sets of property-value pairs (e.g., colour:red
shape:octagon type:sign label:stop) of the kind used by the
ACT-R cognitive architecture (Anderson & Lebiere, 1998).

Thus, the BEAGLE algorithm can be applied to any prob-
lem domain that can be translated into discrete symbols. This
holds true for the Hierarchical Holographic Model (HHM).
While we evaluate HHM in this paper in terms of its ability to
account for properties of natural language, HHM is intended
as a general model of learning and memory.

Hierarchical Holographic Model
The Hierarchical Holographic Model (HHM) is a series of
BEAGLE models, such that the memory vectors of one model
serves as the environment vectors for the next model. Level
1 is a standard BEAGLE model with randomly generated en-
vironment vectors. Once Level 1 has been run on a corpus,
Level 2 is initialized with Level 1’s memory vectors as its en-
vironment vectors. Level 2 is run on the corpus to generate
a new set of memory vectors, which in turn are used as the
environment vectors for the next level, and so on, to generate
as many levels of representations as desired.

To use the memory vectors of a previous level as the envi-
ronment vectors for the next, one must normalize and ran-
domly permute the vectors (Kelly, Blostein, & Mewhort,
2013). For level l + 1, and all words i, the environment vec-
tors for that level are:

(2)el+1,i = Pgroup(
ml,i√ml,i •ml,i

)

where Pgroup is a random permutation used to transform mem-
ory vectors into environment vectors and • is the dot product.

The levels in HHM are virtual mental constructs that could
all be represented within a single fully distributed neural
structure. There is no limit to the number of such levels that
could exist in the mind, as they are not physical constructs.

The levels in HHM can be understood as the products
of memory re-consolidation, the process of revisiting expe-
riences and recording new information about those experi-
ences. The different levels of representation are stored sep-
arately from each other in the model for the purpose of ex-
amining the differential effects of representations that encode
lower and higher orders of associations. The different levels
are not necessarily separate memory systems.

Experiments
In what follows, we show that the Hierarchical Holographic
Model (HHM) is able to detect third-order associations using
a small example data set (Experiment 1). Running HHM on a
corpus of novels from Project Gutenberg, we show that sen-
sitivity to third or fourth order associations strengthens sim-
ilarity between words that are the same part of speech (Ex-
periment 2) and improves the ability of the model to order
words into grammatical sentences (Experiment 3). These re-
sults show that HHM works as intended and that higher-order
associations provide useful language data.

Experiment 1: Small Example Data Set
Higher levels of the model are sensitive to higher orders of
association, as demonstrated by an example data set consist-
ing of the eight sentences in Table 1 as well as an unrelated
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control sentence, ”cars drive on streets”. This is a toy exam-
ple chosen to provide a clear illustration of how HHM works.
We believe this toy example is important because understand
how HHM behaves in this example is critical to understand-
ing how HHM behaves on real language data.

HHM was run with 1024 dimensional vectors and three
levels of representations. In the nine sentences of this exam-
ple, there are 21 unique words, and therefore 210 unique pairs
of words. We can characterize the behavior of HHM by how
the word pairs change in similarity across levels. In Figure 1,
of the 210 word pairs, we graph the 24 word pairs that have
non-negative similarity by Level 3. Of those 24 pairs, we la-
bel the 10 pairs with the most similarity.

The memory vectors for words with second order associ-
ation, such as soar and fly, are close on Level 1 (cosine =
0.51) and closer by Level 3 (cosine = 0.67). Words eagle and
bird, which have only third order association, are unrelated
on Level 1 (cosine = -0.01) but are the fifth most similar word
pair by Level 3 (cosine = 0.33).

Figure 1: Cosines between word pairs across levels.

These results provide a simple example of the effect of the
higher levels. Each memory vector at Level 1 is constructed
as a sum of convolutions of environment vectors. As such,
the memory vectors at Level 1 encode first order associations
with respect to the environment vectors, measuring the fre-
quency with which each word co-occurs with other words
and sequences of words. The cosines between memory vec-
tors are a measure of second-order association, the degree to
which the two words co-occur with the same words. The al-
gorithm that produces Level 1 transforms data that captures
first-order association (co-occurrence) into data that captures
second-order associations. The algorithm is a step, and by
repeating it to produce higher levels, we can build a staircase.

Level 1 of the model cannot detect third-order associations.
A pair of words with third-order association, but not first or
second, do not appear together in the same sentence and do
not co-occur with the same words. As such, the memory
vectors for a pair of words with only third-order association

will be constructed from disjoint sets of vectors. At Level 1,
m1,eagles is a sum of convolutions of e1,soar, e1,over, e1,forest,
whereas m1,birds is a sum of convolutions of e1,fly, e1,above,
e1,trees. As Level 1 environment vectors are approximately
orthogonal, the memory vectors constructed from them will
also be approximately orthogonal. As a result, m1,eagles and
m1,birds are approximately orthogonal (cosine = -0.01).

But at higher levels, the environment vectors are no longer
orthogonal. Level 2 environment vectors are the Level 1
memory vectors. As a result, e2,soar is similar to e2,fly (co-
sine = 0.51), e2,over is similar to e2,above (cosine = 0.46), and
e2,forest is similar to e2,trees (cosine = 0.43). Even though
m2,eagles and m2,birds are still constructed from disjoint sets of
environment vectors, because the vectors that they are con-
structed from are similar, m2,eagles and m2,birds are somewhat
similar (cosine = 0.20). As the memory vectors for the pairs
soar and fly, above and over, and forest and trees are more
similar at Level 2 than at Level 1 (see Figure 1), the environ-
ment vectors for them will be more similar at Level 3 than
Level 2, which increases the similarity between eagles and
birds at Level 3 (cosine = 0.33).

Experiment 2: Part of Speech
We trained HHM on a corpus of novels from Project Guten-
berg. The corpus is 10 238 600 sentences with 145 393 172
words and 39 076 unique words. HHM read the corpus one
sentence at a time. Within each sentence, HHM used a mov-
ing window of 21 words, 10 words to the left and right of a
target word. In that window, all grams that included the target
word, from bigrams up to 21-grams, were encoded as convo-
lutions of environment vectors and summed into the target
word’s memory vector. We used 1024 dimensional vectors.

Using WordNet (Princeton University, 2010) and the Moby
Part-Of-Speech list (Ward, 1996), we assigned a part of
speech tag to each word in the 39 076 word vocabulary. Here
we use similarity between words that are the same part-of-
speech (noun, verb, adjective, etc.) as a proxy measure for
knowledge that those words can be used in similar ways.

To examine the effect of third-order associations, we com-
pare Levels 1 and 2. We limit our analysis to words with at
least 1000 occurrences in the corpus, as these words will have
the most robust vector representations, and to word pairs that
increased or decreased in similarity the most between levels.

As shown in Table 2, of the 1000 word pairs that increased
the most in similarity from Level 1 to 2, 71% of those words
have matching part-of-speech: 48% are partial matches (e.g.,
associated and searching are both verbs, but searching is also
an adjective) and 23% are exact matches (e.g., focused and
emerging can both be an adjective or a verb).

In total, 13% of all pairs of words in the lexicon are ex-
act matches (see Table 2). Among the 1000 word pairs that
increased the most from Level 1 to Level 2, there are signifi-
cantly more (23%) exact matches than would be expected in
a random sample from the set of all word pairs (p < 0.0001).

Of the 1000 word pairs that decreased in similarity the most
from Level 1 to 2, only 1% are exact matches (e.g., both local
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Table 2: Top 1000 word pairs that changed in similarity the
most at each level, categorized by part-of-speech match.

Level Change Exact Partial Mismatch
total - 13% 45% 42%
1 to 2 increase 23% 48% 29%
1 to 2 decrease 1% 53% 46%
2 to 3 increase 26% 44% 30%
2 to 3 decrease 0% 1% 99%

and wizard can be used as an adjective and a noun), which is
significantly fewer than chance (p < 0.0001).

From Level 2 to 3, we find that 26% of the word pairs that
increased in similarity the most are exact matches, which is
significant (p < 0.0001). Of the word pairs that decreased
in similarity from Level 2 to 3, zero were exact matches and
only 1% were partial matches (e.g., never and oh can both
be exclamations, but never is more commonly an adverb),
which, again, was significantly less than chance (p< 0.0001).

In sum, we find that the sensitivity to third order (Level 2)
and fourth order associations (Level 3) strengthens similari-
ties between words with matching part of speech and weakens
similarities between words with mismatching part of speech.

Experiment 3: Word Ordering Task
Do higher-order associations provide additional useful infor-
mation about how to sequence words into a sentence? When
given an unordered set of words that can be arranged into a
sentence, are higher levels of HHM better able to find the
grammatical ordering? We replicate a task from Johns et al.
(2016). In this task, the model is given a set of n words from
an n-word sentence that is not present in the exemplar set.
The model must discern which of the n! possible word order-
ings is the grammatical, original ordering.

Figure 2: Percentage of test sentences correctly ordered by
model as a function of vectors used to represent words.

The exemplar set consists of 125 000 seven-word sentences

randomly sampled from the Project Gutenberg corpus. Sen-
tences in the exemplar set have no words with frequency less
than 300. All test set sentences and permutations thereof are
excluded from the exemplar set.

We embed the word representations generated by each
level of HHM in a minimal exemplar model of syntax based
on Johns et al. (2016)’s work. Each sentence in the exemplar
set is represented as a pair of vectors in the model. One vec-
tor is an unordered set of words constructed as a sum of the
vectors representing each word in the sentence. The second
vector is the ordered sequence of the words in the sentence,
constructed as a holographic representation (Plate, 1995).

Test items are a set of 200 seven-word sentences taken from
Johns et al. (2016). Test items have simple syntactic construc-
tion and consist of words that occur at least 300 times in the
corpus. Test items are presented to the model as an unordered
set of words. The model first selects the exemplar sentence
most similar to the test item, as measured by cosine between
the vectors for the unordered sets. Then, of the 7! possible
orderings of the words in the test item, the model selects the
ordering most similar to the selected exemplar sentence, as
measured by the cosine between the vectors representing the
ordered sequences of words. The ordering is judged correct if
it matches the original ordering of the words in the test item.

HHM is trained on the full Project Gutenberg corpus. We
trained HHM twice: once using a 21 word window, comput-
ing bigrams to 21-grams within that window, and once using
an 11 word window, computing bigrams to 5-grams within
that window. The 5-gram window is standard for the BEA-
GLE model. Words are represented by either random vectors
(Level 0), BEAGLE memory vectors (Level 1), Level 2 mem-
ory vectors, or Level 3 memory vectors. At Levels 1, 2, and
3, we test both the 5-gram and 21-gram variants.

To ensure that results are not contingent on a particular
sample of 125 000 exemplar sentences, results are averaged
across 50 random samples. Mean percent correct across the
50 samples is shown in Figure 2 (Error bars indicate standard
error). To test for statistical significance across the seven con-
ditions, we used a repeated measures permutation test.

Level 0 gets a mean of 35.1% of the sentences correct using
random vectors, i.e., by selecting the exemplar sentence with
the most words in common with the test item.

At Level 1, we find no effect of window size (p > 0.05).
Level 1 outperforms Level 0 (p < 0.0001) with a mean of
57% correct. Level 1 uses BEAGLE memory vectors, i.e.,
selects the exemplar sentence which has the most semantic
similarity to the test item.

Level 2 outperforms Level 1 (p < 0.0001), demonstrating
the value of third-order associations. Here we find an effect
of window size (p < 0.01). The 21-gram window gets 59.5%
correct to the 5-gram window’s 58.6% correct.

At Level 3, we find the 21-gram window again outperforms
the 5-gram window (p < 0.0001). With the 21-gram window,
Level 2 and Level 3 are not significantly different (59.5% vs.
60.0%, p> 0.05). With the 5-gram window, Level 3 gets only
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55.6% correct, significantly worse than Level 2 (p < 0.0001).
Our results show that for the task of ordering words into

grammatical sentences, a model that uses third or fourth order
associations between words outperforms a model that uses
first or second order associations. Our results also show that
higher levels of HHM benefit from n-grams larger than 5-
grams (whereas 5-grams may be sufficient for BEAGLE).

Conclusions
We find that the higher levels of the Hierarchical Holographic
Model (HHM) exploit higher-order associations to gain syn-
tactic information. Sensitivity to third order (Level 2) or
fourth-order associations (Level 3) reinforces relationships
between words that share part-of-speech and improves the
model’s ability to order words into grammatical sentences.

However, we find that higher levels of HHM are more use-
ful when using larger n-grams. At higher levels, HHM pro-
gressively loses the ability to make fine distinctions between
small n-grams as the representations for the words that com-
pose the n-grams become increasingly similar. For example,
”she grinned” and ”he smiled” may be represented by identi-
cal or nearly identical bigrams at higher levels.

At the same time, higher levels begin to be able to make use
of large n-grams. At lower levels, large n-grams are unique,
and thus do not provide useful information about the rela-
tionships between words. At higher levels, large n-grams are
similar to other large n-grams. For example, while the 7-gram
”you are as gregarious as a locust” may occur only once in a
corpus, at higher levels of HHM, this 7-gram comes to resem-
ble other 7-grams, such as ”he was as strong as an ox”.

Gruenenfelder, Recchia, Rubin, and Jones (2016), model-
ing word association norms, find that a hybrid model that uses
both first and second order associations better matches human
data. We note that on the word ordering task, while, on av-
erage, Levels 2 and 3 with the 21 word window produced the
best results, Level 1 often correctly ordered sentences that
Levels 2 or 3 got wrong. We speculate that a model that uses
all three levels could outperform a model that uses only one
level at a time. We hypothesize that human memory is able
to use relations between concepts at varying levels of abstrac-
tion as needed to meet task demands.

The Hierarchical Holographic Model is not intended as
strictly a language model but as a model of human memory
with the ability to detect arbitrarily abstract associations. The
present work is a proof of concept of the utility of HHM as
a model and preliminary evidence that higher-order associa-
tions are relevant to understanding human cognition.
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Abstract

This paper investigates how cognition facilitates the
adoption of new words through a study of the large-scale
Reddit corpus, which contains written, threaded conver-
sations conducted over the internet. Parameters for the
cognitive architecture are estimated. Using ACT-R’s ac-
count of declarative memory, the activation of memory
chunks representing words is traced and compared to
usage statistics sampled from a year of data. Potential
values for decay and retrieval threshold are identified
according to model fit and growth rates of word adop-
tion. The resulting estimate for the decay parameter,
d, is 0.22, and the estimate for the retrieval threshold
parameter, rt, lies between 3.4 and 4.5.

Keywords: neologisms, retrieval threshold, decay

Introduction
Language is a communication system that varies among
speakers and is constantly changing. Naturally, language
occurs in the context of social interaction, and large-scale
datasets reflecting language use are a good opportunity
to study individual cognition in the social context. It
is this context that the cognitive architecture may have
evolved to serve.

The aspects of the architecture most linked to the
adoption of new words among individual language users
is are declarative memory formation retrieval. English
is a productive language: new words are invented fre-
quently. In fact, the rate of new word formation has
increased in the past century (Lehrer, 2006). Newly in-
troduced words might be used for only a short period
of time or may last longer and contribute to large-scale
language change. This process relies on speakers taking
liberties with their word choice and on speaker commu-
nities that facilitate and accept the use of novel words.

In this paper, we model word choice and exposition
to words as the result of declarative memory activa-
tion (Anderson and Schooler, 1991). This lets us study
the cognitive architecture in the context of the social en-
vironment, as it presents itself in a very large corpus of
web-forum dialogue. As a result, we are able to derive
rational parameters for the ACT-R declarative memory
module.

Lexical change has been studied experimentally. For
example, naming games have proven to be a fruitful way
to elicit change (e.g., Baronchelli 2011). The dispersion
of new ideas has also been observed in large-scale data as
well. Hashtags in Twitter are a good example of neolo-
gisms that represent memes. Their dispersion dynamics

can be surprising in that they appear to be different de-
pending on the topic (Romero et al., 2011). For contro-
versial topics, e.g. in politics, repeated exposure keeps
achieving additional adoption (complex contagion).

However, to our knowledge, little work has studied
word adoption at an individual level through cognitive
modeling. We take this as an opportunity to employ
rational analysis to fit architectural parameters. While
Anderson and Schooler (1991) touched on this, deter-
mining certain features of memory that must be true
in order to process newspaper headlines. Relatedly, we
model the state of memory directly to determine the op-
timal fit of parameters based on the data.

For a word to be used spontaneously, it must have
high enough activation to be retrieved. This presents
a bit of a conundrum, and perhaps an explanation for
why this level of analysis has been avoided: to more
highly activate a word, it must be presented, but for it
to be presented, someone must successfully retrieve it.
Nonetheless, one can assume that there are some peo-
ple, the originators, for whom the word is more highly
active. Then, as these people are relatively few in num-
ber, we can still measure the approximate activation for
the adopters. This allows us to find the threshold for
adoption, and thus guess at the threshold for retrieval.

In this paper, we thus present a simple cognitive model
of word adoption. It uses a computational measure of
activation and a corpus of the Reddit web forum to in-
vestigate the role of memory in word adoption. Beyond
word adoption, we are interested in using measures of
activation to compare to more empirical results, such as
frequency. By using such empirical measures across a
wide dataset, we can measure accurate values for cer-
tain parameters of ACT-R that have only been guessed
at based on small-scale experimental results (Anderson,
1983). In particular, we focus on fitting the value of d,
the decay parameter, and estimating the value of rt, the
retrieval threshold parameter.

There are a few related topics that converge to our re-
search questions. In particular, we are interested in the
cognitive mechanisms that cause the adoption of new
words (or neologisms) or new ideas in general, as well as
the ability to use big data to provide evidence toward
parameters in cognitive models. Lastly, most models ul-
timately provide information about declarative memory
elements that already have been presented. This model’s
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novelty, in part, is due to its evaluation of new elements
and an evaluation on corpus data.

Related Work
Beyond naming games, which have focused primarily on
social factors, there are a few studies on the impact
of cognitive factors on word adoption. For instance,
Gilhooly (1984) showed that age of acquisition is more
important than ’residence times’ in naming times. They
likewise relied on new words based on their introduction
to language. Indeed, age of acquisition has been related
to several such experimental paradigms and in many
other studies (e.g., Morrison and Ellis 1995). While
these studies are interesting, they have not focused on
how such factors impact the adoption of new words, just
how well they nestle in a single person. Other studies
we know of that take memory into account at all also
do not take adoption into account (e.g., De Vaan et al.
2007).

Most work that is focused on word adoption at a large
scale has focused on lexical innovation, which normally
has a focus on word forms, rather than memory and
time course (e.g., Baayen and Renouf 1996). However,
an important component of word adoption is not just
whether the word form is easy to learn, but whether it
can be retrieved from memory at all.

Previous work has focused on the relationship between
memory and traditional measures of activation found in
corpora, such as recency and frequency (e.g., Anderson
and Schooler 1991). While that work was fundamental,
it did not develop estimates for modern ACT-R param-
eters.

This calls for a cognitive model, as some value of ac-
tivation should correspond to the retrieval threshold.
While this value is used in ACT-R, to our knowledge,
there are no papers estimating its empirical value in any
field, and we are certainly aware of none estimating it in
language.

Cognitive models of language are of course not new.
Both comprehension (e.g., Lewis and Vasishth 2005; Ball
et al. 2010) and production have been explored (e.g.,
Guhe 2009; Reitter et al. 2011). Language acquisition
has also been explored (e.g., Dörnyei 2009), though it
has mostly focused on second language acquisition. This
is because it is difficult to acquire realistic human lan-
guage data at acquisition time. Cognitive models of
language acquisition without such strict constraints are
much more common (e.g., Pinker and Prince 1988). By
focusing on new words, we provide a possible work-
around. By using a corpus, we have a lot of data in
order to look at certain effects.

Methods
In general, our evaluation relies on comparing the data
created by our model of activation with the human data
from the corpus. This type of evaluation lets us fit

against a large amount of data, not only confirming pre-
vious findings about ACT-R but tuning and estimating
certain parameters.

Data: Reddit Corpus

Our data set consists of approximately 426GB of Reddit
data, ranging from the year 2012 to the year 2014. Red-
dit.com is a community-driven news aggregation website
that mostly contains discussions and ratings on a variety
of topics (Bergstrom, 2011). The various communities
the topics are organized around are called subreddits.

After the submission, people can reply with their
thoughts in a comment. Users can also comment on these
comments. We study these comments. Before applying
any of our analysis, we filter out comments in subreddits
with a small number of users (defined as 500). As anyone
can make a subreddit and invite their friends to join, we
wanted to avoid small subreddits that may more closely
resemble social networks than communities.

What constitutes a new word?

As discussed, our data spans 2012-2014. In this sense, we
came up with a simple way to determine if a word is new:
it did not occur in 2012, but it did occur in 2013 or 2014.
To ensure we excluded non-linguistic or pseudo-linguistic
elements (such as hyperlinks), we excluded every token
that did not entirely consist of alphabetic characters. To
ensure we excluded typos or words that only had mean-
ing in a single conversation, we used a simple arbitrary
cutoff of one hundred occurrences. We claim that these
three requirements are sufficient to define a new word,
or a neologism. Some example words can be found in
Table 1. In total, we found 3545 words matching these
criteria.

There are two important limitations to this. Some
elements of this set of words only have meaning to mem-
bers of that subculture; some of them may have even
fallen out of use already. Secondly, some of these words
originate from a culture external to Reddit. In some of
these cases, the usage of the words is still novel: Square
Cash, a financial product, was frequently referred to as
squarecash by Reddit users. Others, however, are strictly
adoptions, such as Chromecast. Thus, we will refer to
these as first adoption events. However, the cutoff for
number of occurrences does indicate that these are true
adoptions, not simply one-off usages.

While some of the first adoption events are origina-
tion events, all of them are a discussion of something
new. The first discussion of a new idea has social conse-
quence. In Reddit, people receive both explicit and im-
plicit rewards for social acceptance, through the karma
mechanism. We will use adoption to refer to any usage
of a new word by a subreddit, using origination or first
adoption for the first subreddit to adopt it, and later
adoption for later usages.
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Table 1: A table containing examples of new words,
along with the subreddit it first appeared in, and a sub-
reddit that it appeared in later. Both of these events are
treated the same in our model.

Word First Adopter Later Adopter
dogetips dogecoin funny
misanderkirby AdviceAnimals AskReddit
peshka gaming Warthunder
gamecribs leagueoflegends counterstrike
squarecash economy Bitcoin
watchapps pebble Android

Cognitive Model

We see the adoption process as one that is governed by
declarative memory (DM). A word is added to the lex-
icon (in DM), and through repeated presentations, it
becomes available. We conjecture that initial use of the
word is aided by short-term memory, from direct copy-
ing, or aided by cues (which spread activation, if seen
from an ACT-R perspective). At some point, activation
of the memory trace in the modeled individuals reaches
the point where this word is retrievable without the help
of cues. This retrieval threshold, as well as the function
governing the gradual rise in activation, are central to
this model, and we will estimate their parameters from
the data.

We compute the activation of adopted words using the
base-level learning equation defined originally by Ander-
son (1983).

bll(x) = log

(∑
i∈Px

t−di

)
In this equation, x represents any symbol, a word in our
case, and Px refers to the list of x’s presentations. So ti
is the time from that presentation to the present. Nat-
urally, for something with as many presentations as any
given word, it is infeasible to computationally manage
that sum. However, the full equation can be approxi-
mated using only the total number of presentations and
the k most recent presentations and nx = |Px| (Petrov,
2006).

bll(x) ≈ log

[
k∑
i

t−di +
(nx − k)

(
t1−dnx

− t1−dk

)
(1− d) (tnx

− tk)

]
Petrov (2006) shows that the equation is close even for

k = 1. As the amount of events in the Reddit corpus is
very large, computing the many previous events is com-
putationally expensive. Thus, we relied on this approx-
imation and only kept track of the single most previous
event. Note that causes the left sum to collapse to t−dk .

Table 2 gives brief descriptions of how each parameter
was computed. For the constant d, we initially examine
two values: 0.5, the ACT-R default (Bothell, 2004), and
0.16, as found by Vasishth and Lewis (2004).

Activation, in ACT-R, is composed of the base-level
learning function (as above), in addition to spreading
activation from cues and noise.

Table 2: The parameters of our activation equation and
a description of how we computed them

Parameter Description
nx The total number of occurrences of that

word across Reddit
tk The time in between the current usage

and the previous usage
d The decay parameter, 0.5 or 0.16
tnx

The amount of time since the first usage
of the word

k 1

Retrieval Threshold

The retrieval threshold rt defines the point of total acti-
vation for a memory trace to be retrievable. Obviously,
many assumptions influence this parameter, to include
how many times we assume the item to have been used
in the past, outside of the context of the experiment at
hand. As a consequence, no canonical value for this pa-
rameter is available. However, by looking at new words,
which not based on past experience, and influenced less
by external influence, we may be able to approximate
this threshold.

Filtering the data

In order to get a realistic estimate of rt, we had to look at
the pattern of the data. In particular, we wanted to see
at what point words were adopted. However, the time
course data taken naively is somewhat biased: because
each word is adopted at a different point, and our data
is only for just over 400 days, the number of words being
evaluated is different at each day. Thus, to get the full
range of effects while still avoiding bias, we only included
words with over 400 days of data, and excluded all data
beyond 400 days.

Relating adoption to declarative retrieval

Defining exactly what it means when the word is
’adopted’, and thus has activation above rt is non-trivial,
which is likely why there is so little information on it
throughout the literature. However, our hypothesis was
fairly simple: once activation is high enough that re-
trieval is possible, the frequency of usage will rapidly
expand, as it usage no longer relies on referencing exter-
nal sources. We will estimate that point by observing
the pattern of results and finding where the derivative
increases.
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Figure 1: Correlations between word usage and the calcu-
lated activation for different d values, ranging from 0.05 to
0.95.

Fitting the decay parameter

In order to fit the decay parameter, we show which mea-
sure of activation, computed as described earlier, best
predicts usages per day. The usage of each word every
day is an empirical metric that should show how ac-
tive that word actually is. We ask whether the ACT-R
default (.5) or the value found by Vasishth and Lewis
(2004) (0.16) yields a better fit, or if a different value
would be found altogether. A grid search between be-
tween .05 and .95 was used, optimizing the activation’s
correlation with usages per day while using that value.

Results
By closely examining the data, we are able to see a clear
inflection point for rt, as well as a pattern in the fit of
activation.

Decay parameter

The activation for each word occurrence was calculated
for different values for d. Figure Figure 1 shows the cor-
relation between activation and observed word usage as
a function of d. The correlation peaks at 0.22 (see Fig-
ure 1). Note that this methodology is approximate and
assumes, e.g., k = 1. So, this disagrees with a value of
0.5, but, largely, agrees with 0.16 reported in the litera-
ture.

Retrieval Threshold

After showing the pattern of usages per day over time,
there is a point where the function changes from oscil-
lating but linear to a more exponential curve. In other
words, we see a change in the derivative as the word is
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Figure 2: Average usage of new words per day, over time.
Day 0 represents the day on which the word was first adopted.
The dotted line marks the day where the derivative has
clearly changed, around day 250. This inflection point repre-
sents the adoption event.

’adopted’, leading to larger gains as the word is able to
be used more freely. This is around 250 days in, as shown
in Figure 2. Then, looking at the activation over time
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Figure 3: Base-level activation for d = 0.16 calculated for
each word occurrence over time. Day 0 represents the day on
which the word was first adopted. The vertical dotted line is
at the same day as the inflection point shown in Figure 2; the
horizontal line shows the activation for this value of decay,
about 4.4. This value represents a possible value for rt.
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Figure 4: As Figure 2, for d = 0.22. The inflection is near
activation 3.45. This value represents a possible value for rt.
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Figure 5: As Figure 2, for d = 0.50. The vertical shows the
time of the same inflection point shown, here at activation
-0.75

we are able to find an approximate value for activation
where that changes, approximately 4.4 (see Figure 3).
However, this is based on d = 0.16, we also estimate it at
about 3.45 for d = 0.22, our own empirically found value
(see Figure 4). Lastly, we compute it for the ACT-R de-
fault of d = 0.5, and find it to be −0.75 (see Figure 5).
In general, the values found for activation for d = 0.5
also suggest it is not particularly suitable, as a negative
activation should not be retrievable at all. These values

correspond to reasonable guesses for rt. In particular,
based on our methodology, we do not claim either 250 or
the values for rt are the exactly correct values; however,
based on the results of this study, they present reason-
able constraints for an estimation of rt. In particular,
we chose 250 as a point that is clearly starting an ascent
and is significantly above the earlier trend.

Discussion

This paper has used ACT-R memory retrieval on data
that reflects long-term language use in a social context.
With this, we examine two critical parameters in declara-
tive memory retrieval: decay (d) and the retrieval thresh-
old (rt).

With this idea, we follow the idea of rational analysis:
can we observe environmental data to draw conclusions
about the individual cognitive system, assuming that it
has evolved to be optimally adapted to process infor-
mation from this environment while contributing to the
production of such data in the first place. However, what
is perhaps more unique to our approach is that we ob-
serve language behavior in a large-scale and long-term
social context.

As for d, we obtain a best fit at a very different rate
of decay than what is observed in controlled behavioral
experiments. Of course, many standard experiments on
memory retrieval use words, so language is not neces-
sarily unique to the data in the present study. For lan-
guage in context, as in the Reddit data, the slower decay
of language could be due to the heavy semantic related-
ness in language, which causes constant spreading ac-
tivation. Even new words are largely derivative of old
ones, borrowing phonetics, ideas, roots, or at least lex-
icography. Naturally, when dealing with models over
time courses that make sense for language, the differ-
ence between 0.50, and 0.22 is substantial. We provide
additional evidence that the value could be different.

One explanation of the slower decay that we observe
may be reinforcement through cognitive function that is
not observed: in other words, people do not write a word
in a Reddit post every time they think of it. The other
consideration is the time-course of word adoption: we
have examined language use through about one year (the
social band, Newell, 1990), while ACT-R’s declarative
memory framework is currently best suited to seconds
and minutes (the cognitive band).

Still, an important constraint is that Reddit consists
of written language and conversations can span several
days. This could be a possible problem, as it is unclear
how applicable forum discourse is to laboratory studies.
A similar study performed on a corpus of real-time com-
munication could be informative.

Our method for fitting rt opens up many interdisci-
plinary questions beyond the scope of this exploratory
study. What is the range of the inflection point when
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considering multiple samples from the corpus, and from
other corpora? Are there meaningful bands (to use
Newell’s term) identifiable in the behavior of activation
before day 50 and after day 300? Does language use in
context not follow the patterns of cue-based memory re-
trievals found in dedicated experiments? How does the
socio-informational network contribute to a changing in-
flection point and a critical mass necessary for conta-
gion? Nonetheless, we acknowledge the limitations in
the approach for measuring rt, though leave it to future
work to determine a more precise measurement, perhaps
based on fitting a model of retrieval to the corpus data.

Conclusion
In this paper, we use a cognitive model of memory that
models the process of learning new words. By evaluat-
ing the model on corpus of social, contextual language
use, we are able to model large amounts of human data,
which gives us insight into the process and lets us exam-
ine the ACT-R model of memory itself. By comparing
against an empirical measure of ’activation’, we are able
to correlate activation was computed by ACT-R in order
to determine a reasonable value for d in language. We
are also able to compute a reasonable estimate for rt, a
parameter that has yet to be fitted in language or other
domains. Specifically, we found that the bounds for a
retrieval threshold we found lie somewhere between 3.4-
4.5; the decay d at .22 or lower – unlike in many other
studies.
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Abstract
We examine working memory use and incrementality using a
cognitive model of grammatical encoding. Our model com-
bines an empirically validated framework, ACT-R, with a lin-
guistic theory, Combinatory Categorial Grammar, to target that
phase of language production. By building the model with the
Switchboard corpus, it can attempt to realize a larger set of
sentences. With this methodology, different strategies may be
compared according to the similarity of the model’s sentences
to the test sentences. In this way, the model can still be evalu-
ated by its fit to human data, without overfitting to individual
experiments. The results show that while having more work-
ing memory available improves performance, using less work-
ing memory during realization is correlated with a closer fit,
even after controlling for sentence complexity. Further, sen-
tences realized with a more incremental strategy are also more
similar to the corpus sentences as measured by edit distance.
As high incrementality is correlated with low working mem-
ory usage, this study offers a possible mechanism by which
incrementality can be explained.

Introduction
Working memory has long been thought to play an important
role in language processing (e.g., Gibson, 1998). In language
production, one important question concerns grammatical en-
coding, the process by which words are combined into sen-
tences. In this paper, we make progress in understanding the
interaction of working memory with strategies and represen-
tations that are needed for grammatical encoding.

One strategic decision that is crucial to grammatical encod-
ing is how incremental the process is: are words planned in
the exact order they are output, or are other mechanisms at
play? There are, obviously, opportunities to leverage repre-
sentational insights from computational linguistics and algo-
rithmic choices known in natural-language generation. Mod-
els of grammatical encoding thus far have been either too gen-
eral or too specific to both make clear predictions that are
testable with behavioral methods or against known effects.

Computational implementations of linguistic models (e.g.,
Steedman, 2000) are geared towards performance, not ex-
planatory value, which makes it difficult to evaluate their de-
mand for limited cognitive resources and to determine their
interactions with general cognition. On the other hand, con-
nectionist models often aim to be more agnostic to the lin-
guistic task (e.g., Dell et al., 1999), making them challenging
to interpret once they are trained on data. In short, the general
motivations to engage in a combination of cognitive modeling
and computational linguistics apply to grammatical encoding.

With the availability of large-scale data, language models
should strive to explain as much data as possible. Reusing
syntactic alternatives, such as the difference between double

object and prepositional object, can only take the field so far
in explaining the richness of human discourse. Conversely,
if our models are high coverage but not cognitively plausi-
ble, the performance of the model may be good from an en-
gineering perspective, but the model cannot be said to have
explained any of the data from a scientific perspective.

Big data, used appropriately, also allows us to contrast dif-
ferent model variants in terms of their explanatory power.
This can lead to incremental improvements. In short, we call
for a new type of cognitive modeling where it is possible: in-
stead of modeling a relatively small number of experiments
surrounding a phenomenon, we model a large amount of the
raw data produced by the phenomenon itself. For our task,
we evaluate against a corpus.

In this paper, we advance towards such a computational
cognitive model of grammatical encoding. The implemented
model that we will discuss has clear, interpretable representa-
tions in the form of Combinatory Categorial Grammar (CCG,
Steedman and Baldridge, 2011). It is cognitively plausi-

ble and implemented in an empirically validated framework,
ACT-R (Anderson et al., 2004). It is empirically testable,
as the model can produce output for any target sentence, al-
lowing competition among alternative models. Our model in
particular examines how incrementality in syntax, working
memory availability, and working memory usage can improve
or worsen the model’s fit to linguistic data.

Related Work
This paper builds on a rich body of work from both psychol-
ogy and linguistics attempting to characterize the language
production process.

Grammatical Encoding
There are many ways to discretize the steps of the full pro-
cess of language production. For instance, we could say af-
ter an idea is formulated, it is grammatically encoded and
then phonologically encoded (Bock and Levelt, 2002). In
turn, grammatical encoding could consist of lexical selec-
tion, function assignment, and constituent assembly. The first
stage maps ideas to words; the second stage maps words to
parts of speech, and the last stage combines these lexical-
syntactic units (hereafter lexsyns) into constituents. As syn-
tactic trees are formed by recursively combining constituents,
this process eventually leads to a sentence. Thus, the full pro-
cess of grammatical encoding transforms ideas, or semantics,
into a realized sentence.
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Working Memory and Language Production
The precise effect of memory on syntactic processing has not
been the focus of previous studies. Nonetheless, some con-
straints have been proposed on sentence formulation, includ-
ing showing that a higher span can decrease certain types
of grammatical errors (Hartsuiker and Barkhuysen, 2006;
Badecker and Kuminiak, 2007). Further, Slevc (2011) sug-
gests working memory load can affect the incrementality of a
sentence. However, the discussion of representations in work-
ing memory for the function assignment and constituent as-
sembly process is a matter of linguistic theory. We turn to
Combinatory Categorial Grammar (Steedman and Baldridge,
2011), which provides a possible representation, and we show
how it could map to the psychological architecture of atten-
tion, processing and memory.

Theories of Incrementality
V. S. Ferreira (1996) makes an argument for incrementality,
based on the observation that competitive syntactic alterna-
tives facilitate production rather than making it more diffi-
cult. An incremental account of sentence realization would
predict such an effect, as syntactic “flexibility” introduced by
the alternatives makes it easier to find a workable syntactic
decision. By contrast, without incremental commitment to
each structure, competing material slows down the process,
because it would lead to a combinatory explosion. Further
results, however, relativize this account when it comes to the
syntax-phonology interface (F. Ferreira and Swets, 2002). In-
cremental production is possible, but it is “under strategic
control”; it depends on semantic information, and it could
be modulated by external factors, such as stress.

Based on the literature, we assume that incrementality in
grammatical encoding may be graded: the degree to which
a sentence is realized incrementally may vary based on cer-
tain cognitive factors. However, the literature has yet to ad-
dress how speakers (or comprehenders) might use the lim-
ited memory resources available to guide the attendant strate-
gic choices surrounding incremental realization. Our corpus-
driven model has the potential to explain this by contrasting
models with different available working memory, and by ex-
amining actual working memory use, as well as by measuring
the activation and availability of linguistic structures.

Background
Our model relies on the unification between a linguistic the-
ory (CCG) and a cognitive framework (ACT-R), which will
be explained in turn in the following section.

Linguistic Theory
Combinatory Categorial Grammar (CCG) is a grammar for-
malism (Steedman and Baldridge, 2011). While it was not
conceived as a purely psycholinguistic theory, interpreting it
as such has a few important consequences. Most importantly,
after a syntactic operation, the representations are simplified.
This is as opposed to other grammar formalisms, where com-
bination always results in a more complicated representation,

Table 1: The four basic rules of CCG, which specify how syntactic
types can be combined. They are the rules by which types can
be systematically combined into a sentence. The left-hand side
specifies two types, each of which are recursively composed of one
or two types (e.g. X/Y is one type). The right-hand side specifies
the resulting type of the operation on the left.

Forward Application (>): X/Y > Y = X
Backward Application (<): Y < X \Y = X
Forward Composition (>>): X/Y >> Y/Z = X/Z
Backward Composition (<<): Y \Z << X \Y = X \Z

e.g. Tree-Adjoining Grammar (Joshi and Schabes, 1997). In
general, grammar formalisms operate based on types, such
as noun phrase, and rules, which are methods for combining
the types into a sentence. See Table 1 for a demonstration
of CCG’s combinatory rules. See Figure 1 for an example of
how these rules can create sentences.

ACT-R
ACT-R is a general theory of cognition (Anderson et al.,
2004). ACT-R, combined with a linguistic theory like CCG,
can provide a unification of computational modeling, cog-
nitive science, and linguistics. ACT-R’s basic system for
writing models involves chunks and production rules, where
chunks represent declarative memory and production rules
represent procedural memory. In the following sections, we
discuss how we infer the chunks from a corpus.

Methods
We create a model that is automatically derived from the
syntactic and lexical information present in 1,200 sentences
sampled from the Switchboard corpus (Godfrey et al., 1992).
Switchboard is a spoken language corpus of two strangers
having a phone conservation about a provided topic. We
then run this model with no interruptions or constraints, us-
ing the unordered bag-of-words from the corpus sentences
as input as an approximation of the meanings (one sentence
at a time), and expecting sentences or sentence fragments as

			the								dog	
	NP/N								N																				

															NP																																		bit										
						S/(S\NP) 	 	 	 				(S\NP)/NP									 			John			
	 	 	 	 	 					S/NP 	 	 	 	 	 														NP					
	 	 	 	 	 	 	 	 	S	
			the								dog																											bit	 				 	 	 			John	
	NP/N								N																							(S\NP)/NP																NP										

															NP																																	 			 	 	S/NP																				
	 	 	 	 	 	 	 	 	S	 		

T	
>	

>	
>>	

>	

>	 >	
<	

Figure 1: Two contrasting CCG derivations: The top is more in-
cremental (right-branching) than the bottom. Note that the T> is
normally used to mark non-standard derivations, which are usually
more incremental.
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output. The model’s process is recorded in the form of syn-
tax trees (”derivations”) for further analysis, as these deriva-
tions reflect the strategy applied by the model to produce the
sentences. The model’s performance under different working
memory conditions will be evaluated by comparing to each
original sentence. Thus, the core task of the model is to re-
cover the original ordering of the words in each sentence.1

Model
Our model is implemented in jACT-R (Harrison, 2005), a full
Java implementation of the ACT-R theory (Anderson et al.,
2004). This was primarily due to convenience, portability,
and scalability, rather than any difference in theoretical pre-
dictions between jACT-R and the core Lisp ACT-R.

The model’s combinatory mechanism is based on CCG. As
CCG specifies clear symbolic and procedural components,
it maps naturally to chunks and production rules. The ex-
act mapping will be discussed in the following sections. As
discussed earlier, using CCG as the combinatory mechanism
of the cognitive model means that combinations will reduce
the current memory use. We acknowledge that such predic-
tions should match data on working memory, though we don’t
see such a prediction as out of line with current ideas about
chunking (Conway et al., 2005).

The model is generated from a corpus. The model’s goal is
to encode all of the sentences found in the corpus into declar-
ative memory and production rules. A wide range of models
can be created in this way; however, our empirical evalua-
tion is based on a model learned from a subset of the Switch-
board corpus. The chosen sentences use more frequent syn-
tactic types and are of shorter length. Then, the model learns
the words and potential syntactic types from the raw text and
CCG annotations. These learned syntactic types serve as pos-
sible function assignments for the words. Importantly, this is
all the model learns: the production rules are encoded with
no knowledge of the sentences.

In short, the current model forms a sentence by combin-
ing lexical-syntactic chunks together. Out of simplicity, it
chooses what to combine greedily. Importantly, it treats no
words, types, or rules as special, and it has no knowledge
of what words or types should go together beyond the con-
straints of CCG. Nonetheless, simply following CCG rules
can lead to unidiomatic sentences and potentially even un-
grammatical sentences by violating certain thematic con-
straints. This is true of the presented model. However, the
full expressive range of syntactic and lexical constructions
found in a corpus requires substantial learning, which is out
of scope for the present paper. Thus, while many construc-
tions of our model are unidiomatic, we provide a baseline for
future work to be evaluated against. Randomly selected ex-
ample constructions by the model can be found in Table 2.

1Due to our lack of test set, the careful reader may note that it
would be possible to overfit. However, our model does not learn
word orderings directly from the corpus, instead only learning syn-
tactic types: indeed, we are much more interested in the effects of
working memory and grammatical encoding strategy.

Declarative Memory
Declarative Memory (DM) is composed of a few simple
chunk types, described below. The basic organizational
scheme has Sentences composed of Lexsyns, and Lexsyns
composed of a single Word and several Types that the word
can be in a given context.Words simply have a name, which
corresponds to its lexical information (e.g. family).

Types are an arbitrarily complicated CCG type. The types
that exist in DM are the types that are used in Switchboard
CCG derivations of our chosen sentences.

Lexsyns associate a Word with some number of Types.
These associated types are taken from the function assign-
ments of each word in the Switchboard CCG derivations of
our chosen sentences. The types are ordered from most com-
mon to least common, which would mean more common
types would be selected if all else is equal.

Sentences are normally in the goal buffer. Thus, the sen-
tence contains the current state of grammatical encoding. If
we think of the goal buffer as working memory, then differ-
ing the slots available to realize a sentence corresponds to
different predictions about working memory availability. Ad-
ditionally, the sentence chunk also contains the input for the
task. However, this is more of a limitation than a theoreti-
cal commitment: due to our focus on grammatical encoding,
we had to assume the previous tasks of idea generation and
lexical selection were complete. In reality, it is likely that all
three tasks overlap to some extent.

Table 2: Example sentences produced by the model. The ‘target’
is the actual sentence from the corpus, while the realization is what
the model produced. The quality of the model’s output varies.

Realization Target
downhill going like every-
body

but then they started going
downhill like everybody else

you fire never something un-
less anybody ’re caught

they never fire anybody un-
less you ’re caught doing
something illegally

still taxes raise probably and i think he can probably raise
taxes and still get elected

i then and decided i like au-
thor this

and then i decided i like this
author

are school working you are you working anywhere
while you are going to school

Production Rules
We define a small set of about ten production rules (which are
compiled into several thousand production rules through an
automatic process, which we will not describe in detail here).
Depending on the production, the architecture will choose an
appropriate rule; there is no predefined algorithmic flow. The
model’s production rules fall into three basic categories.

1. Syntax Rule Application This production rule may fire
if Working Memory contains at least two Lexsyns whose
types would follow the constraints of at least one CCG rule.
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If so, it initiates Rule (3) to determine the result of the rule
application.

2. Goal buffer modification (A) Move word from Input to
Working Memory: This production rule can only fire if
there is space in the goal buffer for it to be added. It simply
deletes the word from the input, and initiates Rule (3) to re-
trieve its function assignment. (B) Flush: If no other rules
apply, the model will flush, clearing its retrieval buffer or
working memory to try again. (C) Resolve Syntax Rule:
This deletes the unnecessary entries in working memory
after the resulting type is known, as the two entries are
combined into the single CCG entry representing the re-
sult of applying the rule.

3. Lexical Retrieval from DM Retrieve the possible func-
tion assignments of a word (its lexsyn), or retrieve the type
resulting from the application of a syntax rule.

Input
Due to our focus on grammatical encoding, the input to the
model is a bag of words generated from the target corpus
sentence. To be clear, the model does not order the words
its given as input, instead it only combines two words if its
possible under CCG using their current function assignments.
Thus, not every output sentence uses every word in the input.

Experiment
In our experiment, we use the model to ask how the size of
verbal working memory relates to the fidelity of the produced
sentences, and how this interacts with the strategy for gram-
matical encoding.

Conditions
Working Memory (WM) We contrast two basic versions
of the model with 3 and 5 working memory slots, respec-
tively. We consider these values as realistic lower and upper
bounds of working memory capacity as found in language
tasks (Daneman and Carpenter, 1980). This is implemented
simply by limiting the number of slots in the Sentence chunk,
so the model has less available working memory to use to
combine Lexsyns. We distinguish working memory span
(controlled) from actual working memory usage (observed).

Dependent Variables
Branching Factor We see grammatical encoding as a pro-
cess that is quite flexible: the set of production rules, and the
absence of a fixed algorithm (and order in which they are ap-
plied) is commensurate with that (as well as with ACT-R as a
cognitive architecture framing the model). Strategies emerge
as a result of the available cognitive resources, such as WM,
and, ultimately (not modeled) the success of rule sets. We
measure an important aspect of the strategy: incrementality,
as determined by branching factor: The more right-branching
a syntax tree is, the more incrementally it was realized.

We define two basic metrics for measuring branching fac-
tor. The unweighted branching factor (UBF) is the number

of right-branching decisions compared to the number of total
decisions. The weighted branching factor (WBF) takes into
account how far up the syntax tree the decision was made; it
short, it sums all of the subtrees rather than simply compar-
ing the decisions. An example tree and computation can be
found in Figure 2, which is an syntax tree created from the
model’s syntactic decisions. Alternatively, to reference the
CCG derivations from earlier in Figure 1, the top derivation
has a WBF of 3 and a UBF of 7, while the bottom derivation
has a WBF of 1.0 and a UBF of 1.0. These values are not on
the same scale: 1.0 is the mean for WBF, but 0.2 is the mean
of UBF. Both metrics correlate with each other and higher
values represent more incremental constructions.

Figure 2: An example of the syntax tree of actual output from the
model. To compute the weighted branching factor (WBF), sum the
numbers in parentheses for the left and the right, then divide the sum
of the left numbers by the sum of the right numbers. The numbers
indicate the number of leaves in the right and left subtrees. This
computes to 10/8, or 1.25. The unweighted branching factor (UBF)
divides the total number of left leaf nodes (in this tree, 3) by right
leaf nodes (in this tree, 3), getting a branching factor of 1.0.

Working Memory Usage (WMU) This is based on the
maximum amount of slots the model used while realizing
a sentence. This includes slots for retrieval and all lexsyns
stored in the working memory portion of the goal buffer.
We additionally compute the adjusted working memory us-
age (AWMU), which takes into account the length of the sen-
tence, as longer sentences could possibly require additional
working memory, especially if constructions tend to be less
incremental.

Edit Distance This measure evaluates fidelity of the model
output, i.e., match between the result and the input sentence
is computed using Levenshtein distance (Levenshtein, 1966).
An edit distance in general is the number of changes (addi-
tions, swaps, and deletions) to transform one list into another
one: in this case, a sentence is treated as a list of words. Thus,
it is a measurement for how dissimilar two sentences are from
each other. If the model produces multiple fragments rather
than a single utterance, the distances are averaged. We chose
edit distance as a metric to ensure the model’s trace of syn-
tax was being measured, rather than simply the meaning. It
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correlates well with metrics used to evaluate natural language
processing tasks (e.g., Lin, 2004). We define the edit distance
between the two sentences as the model fit.

Results
We examined the correlations between the branching factor,
working memory usage, and fit, as measured by edit distance
between the realization and the target sentences. We analyze
the influence of observed branching factor, available WM and
observed WM usage separately.

Both branching factor metrics (UBF and WBF) were found
to be significant with a negative effect on edit distance, im-
plying more incremental constructions produce realizations
more similar to the initial sentences (p < 0.001). Conversely,
working memory use (WMU) was found to have a positive
effect, implying increased working memory usage decreased
fit (p < 0.001). This had an even larger effect for adjusted
working memory use (AWMU), implying minimizing work-
ing memory usage was especially important for longer sen-
tences. Branching Factor and Working Memory usage (all
metrics) were also significantly correlated (p < 0.001).

Table 3: Individual linear models correlating predictors with edit
distance in the WM=3 condition.

WBF UBF WMU AWMU
p-value < 0.0001 < 0.0001 0.007 < 0.0001
effect −0.221 −0.168 0.057 0.074
Intercept 0.873 0.763 0.507 0.610
r2 0.056 0.025 0.162 0.065
df 1038 1038 1038 1038

Because increased working memory usage is correlated
with decreased fit, this begs the question of whether that
is because sentences with lower working memory usage re-
quirements are easier, or whether using more working mem-
ory directly decreases fit. As sentences have different work-
ing memory requirements, the ones with lower requirements
could just be easier to realize incrementally, possibly reduc-
ing production errors. The five-slot model helps elucidate
this.

In the five-slot condition, the model performs slightly bet-
ter, even though it uses more working memory on average by
both metrics. However, it is also more right-branching than
the other model by both metrics.

Table 4: Individual linear models correlating predictors with edit
distance in the WM=5 condition.

WBF UBF WMU AWMU
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001
effect −0.162 −0.228 0.120 0.041
Intercept 0.915 0.773 0.427 0.685
r2 0.079 0.536 0.092 0.015
df 1038 1038 1038 1038

Discussion
The most interesting take-away from this is that higher work-
ing memory usage, which was previously associated with
fewer speech errors, is associated with worse fit to the corpus
data in our model. This could be because increased working
memory usage, rather than alleviating stress caused by low-
resources, causes the realizer to garden-path itself. By allow-
ing itself to work breadth-first, it can potentially make syn-
tactic choices that won’t eventually lead to a good utterance.
The branching factor could partially be a result of this: having
a higher right-branching factor should lead to lower working
memory use, as new elements are added to the current state,
rather than built up in another way. However, it could also be
a simple consequence of the fact that since language is out-
putted in order, it’s easier to combine it in order, thus allowing
earlier outputs. Importantly, this result indicates the effect of
using less working memory when all else is equal. It does not
indicate the effect of having less working memory available.
An important caveat then, is that this effect could simply be
explained with the observation that easier sentences use less
working memory.

Having working memory available when needed clearly
improves fit, even though in general, using more working
memory worsens fit. Varying WM capacity does not change
the general strategy of grammatical encoding, which prefers
to use less working memory and more right-branching con-
structions. Still, the model with less working memory was
less right-branching. This could perhaps be because with-
out additional working memory available, it sometimes had
to settle for an inferior strategy, perhaps explaining its fit de-
cline, in line with work such as Slevc (2011). We consider
the lower fit of the lower working memory model to be in
line with previous research, which leaves open as a possi-
ble avenue for future experimentation the correlation of lower
working memory usage to higher fit.

We consider both of these results to be compatible with the
hypothesis of strategic incrementality. More incremental pro-
cesses require less working memory. This is because lexsyns
can be combined and outputted, freeing space. Moreover, re-
ducing working memory usage is normally used as a possible
argument for why incremental strategies might be preferred.
That still leaves two basic possibilities: (1) Speakers prefer
to use constructions that are possible to realize more incre-
mentally, or (2) speakers attempt to realize all constructions
as incrementally as possible. We have reason to believe, from
F. Ferreira and Swets (2002), that (2) is not the case, unless
the speakers are under some stress to speak as quickly as pos-
sible. Possibly, (1) can be fairly easily examined from fre-
quency rates, though we are unaware of work doing so.

Table 5: Paired t-tests between WM=3 and WM=5 conditions.
WBF UBF WMU AWMU dist

Cond1-Mean 1.050 0.132 3.156 1.721 0.743
Cond2-Mean 1.023 0.105 2.703 1.575 0.748
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
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By limiting working memory directly, we are able to
demonstrate through the model that working memory is crit-
ical to grammatical encoding: limiting it or having less of
it increases errors experimentally and reduces the fit of our
model. While our task was naturally not perfectly analogous
to experimental work, it does provide converging evidence in
this discussion (Hartsuiker and Barkhuysen, 2006; Badecker
and Kuminiak, 2007).

However, actually using less working memory on any sen-
tence is correlated with increased model fit, even after con-
trolling for effects of sentence length or complexity. There
are several possible explanations for this. For instance, push-
ing working memory to capacity could be more likely to
cause errors, as speakers retrieve too many lexsyns that can’t
be combined, forcing themselves to flush, thereby losing
track of part of the sentence. Conversely, each sentence may
dictate an minimum amount of working memory needed to
realize a sentence even in an incremental fashion. In that case,
the model predicts, testably, sentences with a lower minimum
work memory requirement will have fewer production errors
than others.

Based on our modeling simulations, we argue that there is a
specific amount of modality-specific working memory avail-
able to speakers for grammatical encoding, and that speak-
ers generally do not maximize working memory use. Impor-
tantly, our conclusions require researchers to take our model
for granted, though we do provide metrics by which future
models can be compared.

Conclusion
In this paper, we created a model of grammatical encoding
(specifically function assignment and constituent assembly)
by combining linguistic theory and computational cognitive
modeling. We examined working memory’s role during this
stage of language production, along with additional data on
incrementality, finding the model’s fit increases with higher
incrementality and lower working memory usage, but that
having additional working memory available improves over-
all fit. Lastly, we present the first cognitive model of language
production that is evaluated on a corpus, with a paradigm of
inquiry that makes progress in modeling by comparing gen-
erative fits across different model versions.
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Introduction 

In a typical two-alternative forced-choice task of inference 

from memory, two objects are presented on a computer 

screen, which act as the alternatives among which a subject 

has to choose. Models of inference describe how attributes 

of those objects are used as cues to infer which of the two 

objects scores higher on a criterion of interest. Many 

models of inference have focused on describing not just 

what the outcome of this inference would be, but also which 

processing steps a decision maker would transverse to reach 

a decision. These models have increased substantially our 

understanding of the inferential process we follow (e.g., 

Bröder, 2012) and why this process is successful 

(Gigerenzer & Brighton, 2009).  

However, some scientific question on inference from 

memory remain unanswered, because many models are 

frequently underspecified compared to the data that they are 

tested against. Cognitive mechanisms that remain 

underspecified include perception, motor action or a 

detailed memory theory. We argue that specifying all 

cognitive processes will help those models make precise 

predictions and address currently unaddressable questions.  

The aim of this paper is to implement existing models of 

inference in the cognitive architecture ACT-R (Anderson, 

2007), thus creating a database of publicly available 

architectural process models of decision making. We 

proceed with a brief description the classes of models that 

we include. 

Models included in the database 
Inferential models can be dichotomized, based on the type 

of information they rely upon, into availability-based and 

cue-based models. Following Newell and Bröder (2008), we 

further divide cue-based models into rule-based cue 

abstraction models, evidence accumulation cue abstraction 

models and configural models.  

Availability-based decision models 

We have included two availability-based models in our 

database: the recognition heuristic (Goldstein & Gigerenzer, 

2002) and the fluency heuristic (Schooler & Herwtig, 2005). 

ACT-R implementations of availability-based models 

already exist (e.g., Marewski & Mehlhorn, 2011). However, 

we have included those for completeness. To make 

inferences, both of these models require only declarative 

chunks that represent the decision alternatives. 

A Knowledge-based decision model 

As a starting point, we include a general cue-based 

mechanism, which checks whether there is any knowledge 

present for the alternatives beyond availability and, if there 

is such knowledge for one alternative only, it selects that 

alternative (see Fechner et al., 2016). 

Rule-based cue abstraction models 

Cue-abstraction models operate on individual cues. These 

models retrieve cues one by one and make a decision when 

a decision rule is met. Among these models, we include 

fast-and-frugal heuristics (Gigerenzer, Todd, & the ABC 

Research Group, 1999), like take-the-best (Gigerenzer & 

Goldstein, 1996), ∆-inference (Luan, Schooler, & 

Gigerenzer, 2014) and take-the-last (Gigerenzer & 

Goldstein, 1999). We have also included more complex 

models, like the weighted-linear model (Gigerenzer & 

Goldstein, 1996). Some cue-abstraction models have 

already been implemented in ACT-R (e.g., Dimov, 

Marewski, & Schooler, 2013). All of these models require 

declarative chunks that store cue values of alternatives. 

Evidence accumulation cue-abstraction models 

Just like rule-based models, evidence accumulation models 

(Lee & Cummins, 2004) retrieve cues sequentially and 

require declarative chunks that store cue values. Unlike rule-

based models, evidence accumulation models make a 

decision when enough evidence is accumulated in favor of 

one alternative or the other. We have implemented several 

such models, which differ in how they weigh cue values.   

Configural models 

Unlike cue-abstraction models, which require a separate 

chunk for each cue, configural models work on a set of cues. 

For example, exemplar models (e.g., Nosofsky, 1984) 

compare the cue profiles of alternatives (i.e., the set of cues 

associated with an alternative) to similar cue profile in 

memory and make inferences based on those profiles. We 

implement three different exemplar models. The first model 

evaluates each alternative based on a single similar 

exemplar, the second based on a weighted average of all 
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exemplars in memory, while the third model considers 

fluency information. In addition, we include two prototype 

models, which differ in whether they evaluate the alternative 

based on a set of rules working on the entire cue profile (see 

Johansen & Kruschke, 2005) or based on fluency 

information.  

In addition, we consider configural models which work 

with cue-profile pairs. These models are instance-based 

learning theory (Gonzalez, Lerch, & Lebiere, 2003) and 

parallel constraint satisfaction (Glöckner & Betsch 2008). 

In analogy to the exemplar implementations, we have 

created two instance-based learning models: the first 

retrieves the most similar cue-profile pair, while the second 

retrieves a weighted average of cue-profile pairs from 

memory. 

Discussion and conclusion 

We have provided a database of ACT-R implementations of 

models of inference from memory. These implementations 

provide comparable predictions, which can serve as a basis 

for model tests. Specifically, this database can be used, first, 

in model comparison simulations and, second, it can be 

utilized in future studies to identify decision processes using 

both behavioral and neural data. We expect that this will 

speed up addressing the currently present theoretical issues. 
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Introduction
Virtual reality simulators are commonly used to train Officers
of the Watch (OOW) on conning skills, which are involved
in directing the steering of a ship (Reber, Bernard, & Sul-
livan, 2012). While valuable, these high-fidelity simulators
are large, expensive, require instructor oversight, and, as a
result, only allow trainees limited access. There is therefore
a training gap to be filled by accessible low-cost simulations,
particularly for novice and intermediate learners (Reber et al.,
2012; RCN, 2015).

In the course of our work on such systems for the Royal
Canadian Navy (RCN) (Emond et al., 2016), we created a
gamified tutor to help novice learners apply and improve ba-
sic ship conning skills (ULearn Basic Conning). In this con-
ning game, learners played the role of an OOW on a ship’s
bridge by issuing conning orders to execute a virtual captain’s
navigational commands.

This paper presents an analysis and a cognitive model of
learners’ performance on one of the training scenarios im-
plemented in our game. We developed the cognitive model
to explain the learners’ performance data rather than pro-
vide information to an intelligent tutor (Wong, Kirschen-
baum, & Peters, 2010). The learner response times between
the three conning order conditions were not significantly dif-
ferent. These overall response times were modelled via the
execution of several cognitive sub-tasks using the ACT-R
cognitive architecture (Anderson & Lebiere, 1998; ACT-R
Research Group, 2017), in particular the procedural, audio,
speech, imaginal, and declarative modules. The closest cog-
nitive model of the observed data seems to suggest that learn-
ers process the captain’s command utterance to the end, even
though a retrieval could be initiated before the end of the sen-
tence, and that retrieval of the correct conning order is not
always successful and that a mnemonic strategy is required.

Method
Participants 13 employees of the National Research Coun-
cil Canada (NRC) volunteered for our study. No participant
had prior experience with conning orders. The study was ap-
proved by the NRC Research Ethics Board.

Apparatus The apparatus consisted of a laptop computer
and separate display, with a headset and microphone. Virtual
Battlespace 3 simulated sea states and the ship’s bridge. We

enabled speech recognition of the learners’ conning orders
with the Microsoft Speech Platform SDK 11.

Game Scenario The game had five levels of increasing dif-
ficulty, each with trials following a particular scenario. Once
a learner had successfully completed a certain number of tri-
als in succession, the learner advanced to the next, more diffi-
cult, level. If the learner failed to complete a trial, the virtual
captain provided corrective feedback. Feedback was also pro-
vided upon successful trial completion. A learning session
was limited to 30 minutes. Only some learners had enough
time to progress through all levels. A scenario was comprised
of a series of trials of equivalent difficulty. Each trial be-
gan with a text-to-speech command from the virtual captain.
The learner then responded by speaking one (scenario 1) or
several conning orders (other scenarios) to have the captain’s
command executed by the virtual crew. This then generated
the appropriate visual and auditory feedback. The first sce-
nario required learners to issue one of three conning orders
in response to the captain’s command. Learners were first in-
structed on the three order types: port fifteen turned the ship
left, starboard fifteen turned it right, and midships straight-
ened the ship’s head. The sequence of turning trials was ran-
domized. However, after every order to turn the ship, the next
trial required the learner to bring the ship out of the turn with
a midships order. Consequently, learners gave twice as many
midships orders than either turn order.

Experiment Design The dependent variable was Response
Time (RT), the duration between the start of the captain’s
request and the response by the learner. Order type was
an independent fixed effect variable with 3 levels: left/port,
right/starboard, steady/midships. Learners and trials were
random variables. These variables were included in a sta-
tistical mixed-effects model to identify outliers (see below).

Data Trimming The original data set consisted of 158 ob-
servations. The removal of speech recognition errors reduced
the data set to 151 observations. Outliers were then identified
by inspecting the response time residuals of the mixed-effects
model (see Experiment Design) (Baayen & Milin, 2010). The
procedure removed 8 additional observations when the re-
sponse times were lower than 2 seconds, or greater than 8
seconds. Therefore, the data set for the analysis of response
correctness had 143 observations. However, the analysis of
the response time only included correct responses, which re-
duced the data set to 138 observations.
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Results
Response Times Figure 1 shows the predicted response
time for each order type. The error bars represent a 97.5%
confidence interval. There was no significant effect of or-
der type, though the predicted values increased about 250 ms
from midships to port, and from port to starboard. In addi-
tion, the participants clustered into 2 groups of fast (n=10),
and slow respondents (n=2). The response time per trails did
not indicate any noticeable reduction of response time across
the trials.

Figure 1: RTs by Order Type.

Cognitive Modelling
In spite of the lack of significant statistical differences, we
explored a set of ACT-R cognitive models with the objective
of reproducing the RT pattern from Figure 1. The models
were partitioned according to three main processing steps re-
quired to execute a conning order: 1) the interpretation of
the captain’s verbal command leading to a representation of
the manoeuvre to execute, 2) the retrieval of the relevant con-
ning order, and 3) the utterance of the conning order. The
first two steps had modelling variations. The modelling of
the interpretation step varied in terms of when during the
processing of the captain’s command a representation of the
task was available to initiate a retrieval. The modelling of
the retrieval step varied by providing either sufficient initial
declarative chunk references so that the retrieval time would
be only affected by the level of chunk activation, or by al-
lowing retrieval failure (insufficient initial declarative chunk
references), which requires a prior use of a mnemonic strat-
egy followed by the retrieval. All models used the default
values for the ACT-R parameters for the procedural, audio,
speech, imaginal, and declarative modules. Figure presents
the modelling results.

The closer model to the observation is the Model 3, which
process the captain’s command utterance to the end, and used
a mnemonic strategy to augment the activation of the declar-
ative knowledge linking the captain’s command to the appro-
priate conning order. The models 2 and 4 use a strategy for
which a retrieval could be initiated before the end of the sen-
tence (only applies to midships), while the models 1 and 3
initiated the retrieval process only at the end of the captain’s
utterance. The models 1 and 2 assumed an initially strong ac-
tivation of the relationship between the captain’s commands
and the conning orders, while the models 3 and 4 used a
mnemonic strategy.

Figure 2: Predictions from 4 cognitive models.

Conclusion
Cognitive modelling offers an interesting methodology to ac-
count for reaction times data. Our modelling efforts indicate
that learners process the captain’s command utterance to the
end, even though a retrieval could be initiated before the end
of the sentence, and that retrieval of the correct conning or-
der is not always successful and that a mnemonic strategy is
required. Limitations of the current study include the non-
inclusion of the visual environment for the cognitive model.
Future work will include the data analysis and cognitive mod-
elling of more complex scenarios of the ULearn Basic Con-
ning game.
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Efficiency & Rewards in Multitasking 
Human multitasking occurs in many settings. For example, 
office workers switch tasks roughly every two to three 
minutes, with about half of the switches due to self-
interruption (González & Mark, 2004). An open question is 
how efficient it is to interleave between tasks so frequently. 

To assess efficiency, one first needs to assess what the most 
efficient ways of interleaving are. This can be done by 
predicting the (financial) outcome of multiple interleaving 
strategies using a model (cf. Janssen et al., 2011). In a 
subsequent step, one can measure in an experiment whether 
people applied the predicted most efficient strategies. 

Previous work has applied this approach in various 
multitasking settings (e.g., Duggan et al., 2013; Farmer et al., 
accepted; Howes et al., 2009; Janssen et al., 2011; Janssen & 
Brumby, 2015; Payne & Howes, 2013; Payne et al., 2007; 
Zhang & Hornof, 2014). In general, people change their 
strategies based on the task rewards. However, they do not 
always apply the global maximum strategies, but also 
satisfice or end up at local optima (Janssen & Brumby, 2015).  

A limitation of previous work is that efficiency has mostly 
been studied in specific task settings, without exploring the 
effect of different reward or payoff functions. However, in 
everyday life, many different payoff functions are possible. 
We address this limitation by studying efficiency in a dual-
task setting that allows the use of various payoff functions. 

Method: Whack-a-Mole Task 
In our experiment, participants perform two instances of the 
same task: to “whack moles”. A picture of a mole appears and 
remains at a random location in a 3x3 grid until a numeric 
key is hit (e.g., ‘9’ for top-right, ‘1’ for bottom-left). 
Participants can hit moles in two available screens, of which 
only 1 is visible (and active) at a time (see Figure 1). They 
can switch between screens by pressing the space bar. The 
objective is to hit 50 moles total across both screens. 

Between blocks of trials, we manipulated how rewarding it 
is to hit moles in each screen. Three payoff schemes were 
used. For each scheme, a total of 100 points was earned if all 
50 moles were hit. However, the distribution of scores per 
mole differed. In the linear scheme, each mole gave 2 points. 
In the diminishing return scheme, the first moles gave most 
points and this decreased over time (scores 16.00, 13.45, 
11.29, … 0.003 points). In the exponential scheme high 
points were only given towards the end (0.03, …, 10.05, 

11.33). Participants received full feedback on how much 
points they earned with each mole.  

Within this paradigm, one can investigate how many moles 
are hit per screen. The total of 50 moles can be reached in 
different divisions between the two screens (e.g., 50-0, 49-1, 
48-2, 25-25, 0-50). We refer to these as different strategies. 
We studied three different dual-task scenarios that differ in 
the distribution of possible scores across strategies.  

We label the combination of two linear tasks as an ‘easy’ 
scenario, as each strategy results in the same score (50 x 2 = 
100 points). We predicted that the applied strategies vary 
within and between participants, as there is no environmental 
pressure to converge on one single strategy. 

We label the combination of diminishing and exponential 
payoff as “hard”, as the optimal strategy requires some 
investment in both tasks: get high points early on the 
diminishing task, and then switch to the exponential task. We 
predict variation of strategies between and within subjects, as 
the optimal strategy might be hard to find.  

Finally, we label the combination of diminishing returns 
and linear as “constrained”. Here, the optimal strategy is to 
gather points on the diminishing returns task until scores 
diminish to less than 2 points per mole (the score on the linear 
task). Given this constrained prediction of optimality and its 
clear pattern, we expect that participants will find the optimal 
strategy relatively quickly and then apply it consistently. 

Experiment 1 (48 participants) had 15 trials per condition, 
and no time limit per trial. In experiment 2 (23 participants) 
we introduced a time limit of 30 seconds, to test performance 
under time pressure. In experiment 3 (21 participants) we 
decreased the time limit to 25 seconds. Only the constrained 
and hard condition were used. We also increased the number 
of trials per block to 25 to rule out that some sub-optimality 
could be due to insufficient experience. 

Model 
The model for experiment 1 analytically explores how 

scores change depending on how many moles are hit on each 
task. For the experiments with a time limit, we also had to 

Figure 1: Layout of the whack-a-mole task.  
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take typing speed into account. In this model we assumed that 
participants switched at most once between screens, and set 
the switch cost to the average measured switch cost. Then it 
was investigated how strategy (i.e., hitting 1, 2, 3, etc. moles 
on task A and the remaining moles on task B) affected scores.  

For each participant we measured the mean and standard 
deviation of their inter-keypress interval (i.e., time between 
hitting two moles in dual-task). These formed the parameters 
of a normal distribution from which, for each mole, a sample 
was drawn to determine typing time. This allowed modeling 
of individual differences in typing speed. This was crucial as 
the predictions for optimal strategies varied based on typing 
speed. For each participant, performance of each strategy was 
simulated 100 times. We report mean performance per 
strategy and participant.  

Results 
In all three experiments the patterns fitted our predictions (see 
Method). For example, the optimal strategy was consistently 
found earlier and applied more consistently in the constrained 
condition compared to the hard condition. When a time limit 
was introduced, more individual differences emerged in what 
the optimal strategy was and whether people applied those. 
As an illustration, Figure 2 shows data from experiment 3 for 
the constrained (left plot) and hard condition (right). In each 
plot, the vertical axis shows how many moles were hit on the 
diminishing task, with the remainder being hits on the linear 
(left plot) or exponential task (right). On the horizontal axis, 
all unique participants are plotted (sorted based on total 
achieved score, the best participants are to the right). The 
heatmap color of each bar shows the predicted score, with 
warmer colors for better scores. The black crosses show the 
applied strategies per participant during the last five trials. 

 The figure shows that the distribution of predicted scores 
differs between participants, due to individual differences in 
typing (mole hitting) speed. Moreover, in the constrained 
condition, participants are more consistent (overlapping 
crosses in a narrow band) in applying the best strategies. In 
the hard condition, there is variation in where the optimum 
strategy is: the left most participants should focus solely on 
the diminishing task (warmest colors at the top), as they type 
too slowly to earn points on the exponential task (note that 

the model predicts that not all 50 moles are hit). In contrast, 
the other participants need to balance both tasks. 

Taken together, the results demonstrate that rewards 
influence a priori how easy it is for people to divide their time 
efficiently between two discrete tasks. They also affect 
whether people can achieve efficient performance. An 
implication for theory is that some scenarios (constrained) are 
better than others (easy, hard) to test people’s general 
multitasking efficiency. The work also demonstrates that 
hard scenarios might require substantial training, or different 
feedback for people to perform efficiently. 
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This poster presents a novel computational model of lan-
guage processing that uses functional relationships as defined
in Lexical Functional Grammar (LFG, Dalrymple, 2001), as
well as phrase-structure, to generate syntactic structure on-
line. The model will be used to derive time-courses of pro-
cessing from competing syntactic accounts of unbounded
multiple-gap dependencies and compare these with empirical
data.

The empirical challenge It has been demonstrated for a
number of years that reading speed slows at points in a sen-
tence where an open unbounded dependency might be at-
tached, sometimes called gap sites. For example, Stowe
(1986) compared the reading time-course of sentences (1)-
(3).

(1) My brother wanted to know if Ruth will bring [A] us
home to [B] Mom at Christmas.

(2) My brother wanted to know whoi Ruth will bring [A]
i home to [B] Mom at Christmas.

(3) My brother wanted to know whoi Ruth will bring [A]
us home to [B] i at Christmas.

Both sentences contain an embedded clause, but in (2) and
(3) an unbounded dependency is created at who. In (2) longer
reading times are seen at [A] compared to (1), but not at [B]
where the unbounded dependency has been closed. However,
in (3) longer reading times are seen at both [A] and [B]. The
inference is that the parser, once aware of an open unbounded
dependency, predicts an attachment at each possible gap site.
The longer reading time reflects the processing needed to re-
vise this prediction if a word is encountered at the site, such
that it is not possible to attach the unbounded dependency.
These phenomena are sensitive to island constraints, with
no reading slowdown seen at illicit attachment sites. Thus
Phillips (2013) argues that at least some elements of syntac-
tic structure are available to the parser early in processing (cf.
models where syntactic well-formedness is checked at a later
stage, or optionally).

The picture with parasitic gaps is more complicated. For
example, the attachment site [A] in (4) is illicit, compared
to the licit attachment site [B] in (5). However, as seen in
(6), attachment site [A] is allowed if it is co-referent with a
subsequent licit attachment at site [B].

(4) * Whati did the attempt to repair [A] i ultimately
damage the car?

(5) Whati did the attempt to repair the car ultimately
damage [B] i?

(6) Whati did the attempt to repair [A] i ultimately
damage [B] i?

Phillips (2006), investigating the processing time-course of
(6), found a processing slowdown at [A], although the site is
only licit when a further attachment site is available. In struc-
tures where a parasitic gap was never possible, island con-
straints held and no slowdown was seen at illicit attachment
sites. Phillips argues that the parser’s access to syntactic con-
straints is more sophisticated simply recognising islands and
suspending the prediction of attachment within them.

The grammar-theoretical challenge Many transforma-
tional accounts of unbounded dependencies and island con-
straints make use of constituent structure relationships (e.g.
constraints related to c-command). Conversely accounts
within LFG such as Bresnan et al. (2016) and Dalrymple
(2001) have focused on the role of functional structure. This
has included theories of functional uncertainty, path con-
straints, and explicit empty categories. For multiple-gap de-
pendencies, Falk (2011) proposes additional constraints on
the feature WHPATH, whereas Alsina (2008) uses functional
prominence constraints on structure-sharing.

One way to assess the competing claims of these accounts
is to compare the impact of including them as grammatical
assumptions in computational models of processing. Each ac-
count presents different requirements for the content of mem-
ory storage chunks, available cues for memory retrieval, and
maintenance vs. reactivation of information in working mem-
ory. The model presented is an attempt to do this.

Existing models of processing The model being presented
is built in ACT-R (Anderson, 2007), a symbolic, rather than
connectionist, cognitive architecture. Early work in ACT-R
to model the time-course of language processing was carried
out by Lewis and Vasishth (2005), henceforth L&V, who as-
sume that only the word being attended to is maintained in
working memory, and that attachment into structure is nec-
essary before the next word is attended. Attachment fol-
lows via cue-based retrieval of previously-processed mem-
ory chunks, with abstract structural chunks being created if
necessary. The developing syntactic structure is not avail-
able on-line, although it can be computed from the contents of
working memory, producing a binary-branching constituent-
structure tree . However, the time required to calculate the
impact of long-distance c-structure constraints is likely to be
much greater than values reported from experimental data,
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which raises problems for transformational accounts of is-
land constraints. Engelmann (2016) has expanded L&V’s
work to model eye-movements during reading. The capac-
ity of his model is enhanced such that the current IP node
can be accessed without a time penalty, and provides more
retrieval buffers for grammatical information. This enables
attachments to be generated between multiple chunks simul-
taneously, which is used in the new model.

The new model This model’s core processing cycle adapts
that of Engelmann’s model. Syntactic structure comprises
memory chunks representing f-structures, rather than c-
structure nodes. As in L&V’s and Engelmann’s models, the
full syntactic structure can only be calculated by retrieving
memory chunks, but in addition to the word being attended,
a ‘live’ chunk may be maintained in working memory, re-
flecting the observed contextual prediction of syntactic struc-
ture (e.g. Wicha et al., 2004). There is enhanced access to
the memory chunk representing the current verbal predicate,
analogous to Engelmann’s assumption of enhanced access to
an IP node and is supported by Chow et al. (2015), who find
an advantage for local arguments over matrix arguments, dur-
ing the processing of an embedded clause. Crucially, it is not
necessary for a syntactic chunk to be attached before the next
word is attended, provided that its grammatical function (GF)
is clear. The model also assumes that some information about
the target GF for an open dependency is maintained, follow-
ing Wagers (2013). The number of memory chunks needed
to represent a sentence, and therefore the number of attach-
ments, is smaller than earlier models because the information
provided by functional categories C, D and I sits in a memory
chunk with a semantic PRED value, rather than in a distinct
chunk. Thus parsing the sentence The writer surprised the
editors generates 6 grammatical memory chunks in L&V’s
model: one for each word and one abstract structural chunk.
The presented model generates 3 for the same sentence, rep-
resenting editor, surprise, and writer respectively.

Regarding attachment, this is governed in L&V’s and En-
gelmann’s models by the availability of attachment sites
found using retrieval cues appropriate to structural expec-
tation and lexical information, and by specific attachment
productions that represent phrase-structure rules applying a
left-corner parsing algorithm. Memory chunks are generated
for terminal nodes and for any intermediate nodes necessary
to attach the current word to existing structure. In the new
model, productions are selected taking into account the cur-
rent processing state; lexical information, including but not
limited to syntactic category; and the level of activation of
memory chunks outside working memory. The successful
production determines whether a new chunk is attached to the
current ‘live’ chunk or whether a chunk must be retrieved;
which attachment sites are available within a given mem-
ory chunk as attribute-value pairs are added; and also which
chunk is ‘live’ once attachment has been made. This might
be the current ‘live’ chunk, the newly-attached chunk, or a
previously-processed chunk (e.g. returning to a matrix clause

after processing an argument of an embedded predicate).

Open questions for discussion Open questions presented
include assumptions about the details of attachment produc-
tions, which must be congruent with phrase structure rules
as well as functional relationships; options for the detailed
representation of the presence of an open unbounded depen-
dency; and methods of calculating or representing the con-
straints that determine potential attachment sites.
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Abstract 
A concept of a cognitive model is presented that allows for 
examining effects of negative feedback on changing mental 
models of a user interface. We hypothesize that users who are 
given more evidence against their mental model are less likely 
to change it, depending on the type of feedback they are 
provided with. Assumptions about the effects of feedback are 
explained from a theoretical account of mental model 
activation based on mental set and fixation. We propose an 
experimental keypad task that requires users to switch from a 
mental model of a calculator keypad to a telephone mental 
model based on two types of feedback. A scheme for an 
ACT-R cognitive model is provided, showing how 
predictions on user behavior can be made using spreading 
activation and utility learning mechanisms.  
 

Keywords: Mental models; keypad; mental fixation; 
redistribution theory; mental set; ACT-R; partial matching; 
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Introduction
Cognitive models are often built on general cognitive princi-
ples, principles derived from empirical data, and sometimes
a modelers’ intuition and introspection. If the model is able
to explain the data better than other models it is considered
as a good model. So far most if not all evaluation depends on
the models that have been proposed by researchers. Close
to never any cognitive model is being systematically opti-
mized after it has been created. In the following we pro-
pose a method to optimize a cognitive model by systemat-
ically changing the originally proposed one by maintaining
its cognitive structure. As an example let us consider one
of the most successful models to explain human reasoning
with conditionals, the inference-guessing model proposed by
Klauer et al. (2007). The model is a multinomial process-
ing tree (MPT) and is used to explain human reasoning in the
Wason Selection Task (Wason, 1968), see Figure 1.

Figure 1: A pictorial representation of the Wason Selection
Task. Participants have to decide which card(s) they neces-
sarily need to turn to test whether “If a card shows a D on
one side, then its opposite side is a 3” holds. The small letters
p, p, q, and q represent the cards corresponding to a general
conditional of the form if p then q.

Answers from the participants about the number of cards
to be turned range from 0 to 4. A meta-study by Oaksford
& Chater (1994) analyzed how many of the cards are turned,
and every combination of cards actually occurs although only
two of the cards are logically sound (cards “D” and “7).

Multinomial Processing Tree Models
Multinomial Processing Trees (MPTs) are acyclic directed
graphs. Each leaf node represents one possible observed out-
come denoted by Oi for 1≤ i≤ K for K observed outcomes.
Non-leaf nodes represent one single latent part of the overall
process, splitting the still possible answers into two distinct
groups, assuming the MPT is binary and all arbitrary MPTs
can be transformed to a binary MPT (Klauer et al., 2015).
These are governed by a transition probability θi ∈ [0,1] for
one group and (1− θi) for the other. The probability of one
leafe node is the product of all probabilities along the path to
the node. The probability of one outcome Oi is the sum of the
probabilities of all leafe nodes with outcome Oi.

The inference-guessing model builds on the core cognitive
assumption that the reasoners’ understanding and interpreta-
tion of the rule leads the inferences about how the rule is actu-
ally applied to the cards. The inference part uses five parame-
ters, four of them describe how the rule is interpreted and one
referring to the reasoning itself. The guessing part is modeled
by 4 parameters which decide for each card independently if
it is turned. The two parts are divided by one parameter which
separates guessing and reasoning.

A Method to Find Better Models
Our proposed method consists of three subsequent steps. The
first step needs to check whether a cognitive model structure
can be changed at all, i.e., if it consists of parameters or as-
sumptions. The second step is to identify where the model
represents the latent cognitive processes and which core as-
sumptions cannot be changed. The third step needs to formu-
late a model changing strategy according to the findings from
the first step without changing the cognitive core concepts
and assumptions from the second step.

Applied to MPTs this works as follows: The first step is
quite obvious as it is how acyclic directed graphs can be mod-
ified. This includes adding new nodes, deleting nodes, chang-
ing the graphs’ structure in any way imaginable or changing
parameter-node connections. For the second step, we have to
look at the models and where the cognitive assumptions are
interwoven with the model implementation. For MPT this
resembles the parameters. In MPTs one single cognitive pro-
cess is described by a single parameter and splits the currently
possible answers in two distinct defined subsets. This is what
cannot be changed by the process because this would change
the cognitive assumptions and would lead to a loss of explana-
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tion. In formal terms, this means that every parameter has to
coincide with one of the cognitive model proposed processes.

The two changes that were done are a substitution of a pa-
rameter weight and deleting of redundant subtrees. Substitu-
tion of a parameter weight means that one cognitive process
which has the same probability weight in the tree at every
place it occurs is allowed to have different weights under dif-
ferent circumstances. Formally this means that if there is a
parameter A with value p in the original model which occurs
in a set of k nodes NA = {n1, . . . ,nk}, which means θi = p
in all these nodes, can be replaced by a set of parameters
A j, j = {1, . . . , l}, l≤ k where all A j split the possible answers
into the same sets thus they all model the same predicate and⋃

j NA j = NA. This allows the weights (θ) of the nodes gov-
erning the same process defined by A to be different at differ-
ent circumstances.

A delete operation preserves the cognitive structure if the
deleted partial tree is redundant. This means that every out-
come Oi which has a leaf node in the deleted subtree has at
least one leaf node outside of the deleted subtree and there-
fore is still part of the prediction after the deletion. This is the
same as assuming that the parameter at this point is either 1
or 0.

To evaluate the procedure we implemented each model
as an MPT and evaluated them with MPTinR (Singmann &
Kellen, 2013) a package for the software environment R for
statistical computation (R Core Team, 2016). The G2, AIC,
BIC, and FIA values were then compared. These values mea-
sure how well a model fits given data. AIC and BIC also in-
clude the number of parameters into their measure. FIA in-
cludes complexity measures of the model (Ragni et al., 2014).

The dataset used is from the studies from Klauer et al.
(2007) and Stahl et al. (2008), the first eight are from Klauer
et al. (2007) (since the Experiments 5 and 6 consider specific
manipulations like directionality or nonstandard arrays) and
the other twelve are from Stahl et al. (2008). We chose it
because the Klauer et al. (2007) data is the data the inference-
guessing model was originally fitted and it was also used on
the data from Stahl et al. (2008). Together we considered all
6321 participants from the studies.

Results

For the inference-guessing model (Klauer et al., 2007) about
14,000 unique models were generated by substitution from
this procedure. About 6,000 of them fulfill the constraints
that in each partial tree the number of different parameters has
to be smaller than the number of possible answers. Collaps-
ing nodes enabled the generation of 126 new models. 3,240
of these trees performed better than the inference-guessing
model on the aggregated data. When we evaluate the aggre-
gated data the values of the best optimizing model is outper-
forming the original model by a factor of 20 for the G2. Col-
lapsing nodes didn’t yield equally good results, it performed
slightly worse than the original model on the aggregated data.

Table 1: Results on the aggregated data.

MPT-model G2 AIC BIC FIA
optimized model 9.39 37.39 132.23 49.40
Klauer et al. (2007) 215.50 235.50 303.25 144.89

General Discussion
While there is a vast literature on modeling with multinomial
process trees, many models are often introspective models.
What we propose is to use this as the starting point and go
further by letting optimization algorithms improve on these
models while preserving the modeler’s intuition and cognitive
assumption. Although the inference-guessing model provides
quite a good fit already our method achieved an improvement
by a factor of 20 for the G2. But what is shown here is only
the first scratch on the surface. There are still many ways
to explore this further. Combining and implementing more
strategies, finding better quality functions and expanding this
procedure on more different types of models are next steps.
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The acquisition and retention of factual and procedural 
knowledge is impacted by multiple factors. Most basically, 
as material is studied, memory performance improves. The 
change in performance approximates a power law – 
additional practice produces further improvement, but at a 
diminishing rate (Newell & Rosenbloom, 1981). 
Conversely, memory performance degrades during periods 
of non-use. This also approximates a power law, with rapid 
loss occurring initially followed by more-gradual, sustained 
loss (Anderson & Schooler, 1991; Rubin & Wenzel, 1996). 
In addition to these factors, knowledge acquisition and 
retention is impacted by the temporal distribution of 
practice. Separating practice repetitions by a delay slows 
learning but enhances retention (Cepeda et al., 2006). 

The Predictive Performance Equation (PPE; Jastrzembski 
& Gluck, 2009; Walsh, Gluck, Gunzelmann, Jastrzembski, 
& Krusmark, in revision) is an extension of the General 
Performance Equation (GPE; Anderson & Schunn, 2000). 
Both PPE and GPE represent how amount of practice and 
elapsed time since test impact learning and retention. 
However, PPE also accounts for how the temporal 
distribution of practice affects retention. In PPE, including 
more space between practice repetitions reduces decay rate, 
thereby increasing retention. In the research reported here, 
we test the ability of PPE to generate subject-level 
performance predictions for cardiopulmonary resuscitation 

(CPR). Such predictions, if valid, could be used to prescribe 
personalized refresher training intervals. 

In addition to testing a model of knowledge acquisition 
and retention, we sought to study learning and memory in 
conditions more reflective of the real world. Although there 
is an extensive scientific literature associated with learning, 
forgetting, and spacing effects, much of it suffers from two 
deficits in ecological validity. First, most published studies 
of these effects involve abstract, simplified laboratory tasks. 
Second, in most of these studies, all of the learning and 
retention taking place in short time periods, often within a 
single experiment session. 

In this effort, we tackle both of these traditional 
deficiencies. The task domain we studied is 
cardiopulmonary resuscitation (CPR), which is a real-world 
basic lifesaving skill relevant worldwide. Using a modern, 
instrumented QCPR manikin, it is a task that taps into a 
combination of procedural and script-based learning. The 
learning and retention periods we tested span months to 
years, allowing us to assess the predictive accuracy of PPE 
over an ecologically relevant timeframe.  

Participants were German citizens enrolled as students at 
the University of Groningen. A requirement for initial 
issuance of a driver’s license in Germany is the successful 
completion of first aid training that includes CPR. Thus, 
each participant in this study completed initial CPR training 
when they received their driver’s license (an average of 43.1 
months before data was collected; SD = 21.9). The initial 
study session started with one bout of CPR to assess current 
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performance levels, after which participants were retrained 
and completed three further CPR training bouts (with a 10 
min delay between the initial test and the next two bouts, 
and then an hour between the 3th and 4th sessions). In 
addition to CPR data, we also collected Raven-based IQ 
scores, fact learning proficiency using the SlimStampen 
algorithm (Sense, Behrens, Meijer, & van  Rijn, 2016), and 
data from a Serial Reaction Time Task (Robertson, 2007).  

Here, we focus on the CPR results. We present the data of 
a first session in which learning and retention of declarative 
and procedural knowledge is assessed. Based on this data, 
we used PPE to predict retention performance after an 18-
week delay. At the writing of this abstract, the second 
session has not been collected, but the predictions have been 
made and will be posted at the Open Science Foundation. 
(https://osf.io/9er6g/). 

During the experiment session, CPR performance scores 
ranging from 0 to 100 are automatically generated and 
recorded by the manikin for each training bout. We 
calibrated PPE separately to each of 50 participants based 
on their training history and performance scores. We do not 
know how participants scored during the initial training they 
completed before receiving their driver’s license but we 
know the approximate delay since the training. To include 
this observation in a participant’s training history, we make 
the simplified assumption that everyone scored 75 during 
their training, which is the threshold for adequate 
performance. We then used the calibrated model to predict 
retention performance after an 18-week delay. 

 

 
 

Figure 1: Data of three participants and model 
performance predictions. 

 
Data in Figure 1 show results from three participants, 
strictly as examples of the individual differences we see in 
performance. The total sample, available at OSF, is 50 
participants. The black points show observed performance 
scores from the first study session. The red points show the 
model’s fits to performance from the first session, and the 
model’s predictions for 18-week retention. At the 
conference, we will present the full data of the initial and 
second session, and discuss in detail how the model 
predictions match up with the behavioral data. 
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Introduction 

Human reliability assessment (HRA) techniques are used to 

predict people’s response to emergencies. Human 

performance data required to perform HRA in emergency 

scenarios are not readily available. Due to lack of available 

data on human performance in emergencies, HRA analysis is 

usually done using expert opinion (Groth, Smith, & Swiler, 

2014). Expert opinion, while valid in certain circumstances, 

can lead to uncertainty in results (Musharraf et al., 2013). 

This uncertainty can be reduced by use of a virtual 

environment (VE) to gather data on human’s performance 

during emergency situations. Another limitation of most 

HRA methods is that they do not consider dependency 

amongst performance shaping factors and associated actions 

(Musharraf et al., 2013). Bayesian networks (BN) enable 

modeling of such dependency (Groth & Mosleh, 2012b). By 

using a Bayesian network (BN) in combination with a virtual 

environment, the uncertainty in results can be reduced, and a 

person’s response in emergency situations can be assessed. 

Musharraf et al. (2014, 2013) presented a VE based 

technique to determine an individual’s failure probability in 

emergency situations. They used data from a VE to quantify 

a BN to assess human reliability in offshore emergency 

conditions. Performance shaping factors (PSFs) were 

selected based on a task analysis and the capability of the VE. 

The factors were varied at different levels and data to 

quantify the BN were collected. Results from the study 

indicated that this method is a viable way to overcome 

uncertainty associated with expert opinion, to create a 

realistic way to demonstrate dependency amongst PSFs, and 

to estimate human error more accurately. However, choice of 

the PSFs in the study was constrained by the VE’s capability 

and did not provide an ideal representation of offshore 

emergency scenarios.  

This paper addresses these limitations by using the same 

experimental technique, but with more realistic PSFs. The 

PSFs selected for this research are stress, uncertainty, and 

complexity. The lack of knowledge about how these factors 

affect individuals’ performance in emergencies undermines 

organizations’ ability to manage safety. This is especially 

important in the offshore oil and gas industry where facilities 

tend to be remote and external emergency response is not 

immediate (Flin, Slaven, & Stewart, 1996).  

 

Method 

The methodology followed for this experiment is outlined in 

Figure 1. As with any HRA, a task analysis was completed 

prior to the assessment. The tasks of interest here are the 

required safety compliance procedures associated with 

emergency situations. After the task analysis, a list of factors 

that can influence task performance was selected. The next 

step was to model the dependency between the PSFs and task 

performance using BN. Once the BN was developed, 

scenarios were created in the VE to get the data required to 

quantify the BN. Data was then collected by observing 

participants’ performance in the virtual scenarios. Finally, the 

collected data were integrated into the BN and the reliability 

of participants was assessed. 
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Figure 1: Methodology 

 

Results & Discussion 

Results show that the BN method is effective at determining 

the probability of success of an individual in offshore 

emergency situations using a VE. It allows for the completion 

of a HRA analysis using data that is not based on expert 

opinion. Participants’ retention of the information provided 

in the training, and application of the knowledge and skills 

they acquired was observed. By combining a BN with data 

from a VE, predictions can be made about how successful a 

participant will be in real-life emergency situations.  

The results also demonstrate that manipulation of a BN 

model is useful in investigating the cause-effect relationship 

between the performance shaping factors and the success 

probability (Groth et al., 2013; Musharraf et al., 2014). For 

example, by providing evidence of a change in PSF, the effect 

on the participant’s success probability is shown in the 

updated BN model. This information is valuable as it can lead 

to adaptive training that is specific to the individual. Results 

that demonstrate similar errors across all participants are also 

useful. These results can provide information that can lead to 

an improvement in safety critical procedures and physical 

workplaces. 

 

Conclusion 

This poster presents a methodology to investigate the effect 

of PSFs on offshore emergency evacuation using a virtual 

environment. The results show that a person’s response 

during an emergency can be probabilistically quantified 

using the BN approach. This study focuses on individual 

human factors. Future work would benefit from inclusion of 

organizational and teamwork factors. 
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Abstract 

In this paper, we propose a novel quantitative approach to 
understand why some neurodegenerative diseases such as 
Alzheimer’s disease affect some semantic categories more 
than others, known in cognitive neuropsychology as category 
specific semantic deficits. First, we represent semantic 
features of animal and tool semantic categories using a 
network mathematical tool. Second, we develop an algorithm 
building on the idea that, in Alzheimer’s disease, semantic 
memory is gradually degraded with features specific to some 
objects are lost first then more general ones. We apply this 
algorithm to the networks of animal and tool features and 
examine how the gradual degradation of features affects their 
structures using graph measures. Our results show that, at the 
early stage, when distinctive features were lost, both networks 
are robust against the gradual loss of semantic features. 
However, when shared features were removed, the network of 
tool features appears to be more sensitive to attacks because 
the network disconnects into 20 components, compared to the 
network of animal features that disconnects into only two 
components. This approach provides a promising way to 
understand category specific semantic deficits.  
 

Keywords: semantic memory, network model, category 
specific semantic deficits, degradation of semantic 
knowledge, small world property, semantic memory 
impairments, dementia  
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Abstract 

The computational modeling of cognitive processes can be an 
insightful endeavor for understanding the fundamental 
mechanisms of cognition. In order to simulate relational 
reasoning, we modeled three-term tasks using mental model 
theory as a theoretical framework. We implemented the 
model in the Neural Engineering Framework (NEF) which 
provides insights into how spiking neural networks facilitate 
or aggravate this process. We were able to address issues and 
peculiarities arising from symbol based relational reasoning 
implemented in connectionist networks. 

Keywords: Relational reasoning; Neural Engineering 
Framework; Nengo; Cognitive modeling; Transitive 
reasoning; Theory of mental models 

Introduction 

Relational reasoning is a cognitive capability on which 

many aspects of human actions are based on, for instance 

intelligence (Waltz et al., 1999). An example for this is 

reasoning about locations: If it is known that the 

supermarket is to the north of the gas station and the gas 

station is to the north of the church, we can easily determine 

that the church is to the south of the supermarket. Although 

relational reasoning is crucial, its cognitive and neural 

mechanisms remain largely unclear. Yet, psychological 

hypotheses have been formulated. One well-known 

hypothesis invoking the application of mental models has 

been proposed by Johnson-Laird (1983). According to 

mental model theory, all relevant information is integrated 

in one model representing the configuration of all objects. 

To derive the conclusion whether a mental model is valid or 

invalid, three distinct phases are passed. Phase one, 

construction, involves the initial creation of the mental 

model while phase two, inspection, comprises the 

generation of new information. In the third phase, variation, 

the creation of alternative mental models is elicited to 

disprove the information gathered in phase two (Fangmeier, 

Knauff, Ruff & Sloutsky, 2006).  

Since relational reasoning has been researched for several 

decades, cognitive models of it are quite common. For 

example, spatial relational reasoning was successfully 

modeled in the symbolic framework ACT-R (Ragni, 

Fangmeier & Brüssow, 2010). However, since the theory of 

mental models is based on the usage of symbols, an 

implementation in neural networks has not been attempted 

so far. One approach to tackle this issue are vector symbolic 

architectures like the NEF. These use neuronal clusters to 

represent, modify and combine vector symbols. Due to 

these, it is possible to model symbolic reasoning in 

connectionist networks. Nevertheless, modeling within a 

vector symbolic approach differs greatly from classic 

production systems like ACT-R. The first step to expand 

relational reasoning towards vector symbolic architectures is 

the implementation of transitive closure in its simplest form. 

By that, we are able to show how relational reasoning can 

be implemented in the NEF. Subsequently, we address 

several issues resulting from this architecture.   

The Model 

The Task 

As proposed by Fangmeier et al. (2006), we aim for a 

presentation of the three-term tasks which abstracts from 

reading processes which might influence reasoning. 

Accordingly, the presentation is geared to the fMRI study 

by Fangmeier et al. (2006). Here, premises like ‘A is left of 

B’ are presented without the usage of syntax. Their position 

in the premise is coded in their screen position. In the 

abovementioned example, ‘A’ is presented on the left side 

of the screen, while ‘B’ is presented on the right side. After 

the presentation of the second premise, a putative 

conclusion is presented that is confirmed or refused by 

button press.  

The Modules 

The model consists of five parts accomplishing diverging 

tasks. The visual system module processes information 

about an object and its location and combines these. The 

mental model module consists of several buffers containing 

the elements of the mental model. The compare module is 

connected to the part of the visual system processing the 

objects and to the different buffers that are designated for 

the mental model formation. The buffer module comprises 

two buffers to store information which cannot be processed 

immediately and one additional buffer providing 

information about the model’s state. The motor module 

simulates the button press. This ensemble of modules is 

complemented by the NEF’s basal ganglia system 

containing and triggering the right action depending on the 

situation.  
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Fig 2.: Schematic illustration of the model’s main 

components and connections. 

The Reasoning Process 

After the presentation of the first premise, a preliminary 

mental model is created in the buffers L1 and R1 whereat 

the left term is stored in L1 and the right one in R1. With 

the presentation of the second premise, two cases can be 

differentiated. In the simple case, the first object of the 

second premise is already known from the first premise. 

With knowledge of the common term and its position in the 

second premise, the position of the last term is already 

determined, leading to an easy integration. In the hard case, 

the first term of the second premise is not known and its 

position in the mental model remains unclear until the 

second term is presented. Here, the first term and its 

position are stored in the buffer module. After the 

presentation of the second term, all necessary information is 

present and the integration of the third term can proceed. 

One can easily see that comparing objects in the mental 

model with objects in the visual module is paramount for 

transitive closure.  

With the presentation of the putative conclusion, the 

model needs to verify it with regard to the mental model at 

hand. For this purpose, it must determine if the 

configuration in the putative conclusion is identical to that 

in the mental model. To achieve this goal, objects from the 

putative conclusion are compared to the mental model and 

the matching positions of the model are written in the buffer 

module. Here, one must consider that buffer_1 stores the 

position within the mental model that the left term of the 

putative conclusion corresponds to, while buffer_2 does the 

same for the mental model position corresponding to the 

right term of the putative conclusion. Having gathered and 

stored this information, rules from the basal ganglia can 

apply on different configurations and determine whether a 

putative conclusion is consistent with the mental model. 

Results 

Generally, it was possible to model relational reasoning in 

the NEF. However, since the NEF does not impose any 

restrictions and presumptions considering the modeling of 

higher cognition, it is impossible to compare the output data 

with human behavioral data. Hence, all findings only refer 

to concepts and structures when modeling relational 

reasoning in the NEF. Considering the model, the compare 

module is well connected since it receives information from 

the mental model and the visual input. Additionally, it 

shows a distinct behavior regarding the objects in the mental 

model and the visual module. Hypotheses declaring a 

compare network could be reviewed under these criteria. 

Furthermore, the comparison process depends on the 

availability of objects without the location bound to it. That 

is why we implemented a ventral (‘what’) and a dorsal 

(‘where’) pathway for the visual perception (Goodale & 

Milner, 1992). Consequently, connections between the 

compare and the visual module should only exist within the 

ventral stream.  

Before the compare module came to its final form with 

every object of the mental model compared in parallel, 

serial approaches have been tested. With these, it is hard to 

maintain the information flow in a reliable manner if every 

object is processed serially. Consequently, there are 

problems that our model cannot discriminate. Parallel 

comparison can be refuted, if empirical data suggest that 

there is a difference between these problems.  

Discussion 

Our model provides valuable insights into the successful 

modeling of higher cognition in the NEF. Nonetheless, an 

issue is the difficulty of comparison with behavioral data. 

This could only be resolved by modeling all parts of the 

brain that are involved in the reasoning process. Herewith, 

quantitative comparisons and evaluations of the model 

would generally be possible but not with the nowadays 

limited knowledge about the specifications constituting the 

human brain. Nonetheless, the model offers insight into the 

peculiarities of modeling higher cognitive processes within 

the NEF. Further, it suggests how to design experiments that 

might shed a light on the issues.  
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This study uses a methodology similar to Gray & Boehm-
Davis (2000) to look for evidence of the SGOMS 
architecture (West & Macdougal, 2014) in a simple 
response task. SGOMS is a theory of how people manage 
complex real world tasks involving expertise. The SGOMS 
macro architecture is a specific way of structuring an ACT-
R to model expertise. However, it is not the most efficient 
way to model a simple, uninterrupted task in ACT-R. This is 
because SGOMS uses extra productions to handle 
unexpected interruptions and to save information for re-
planning. SGOMS also uses extra productions to manage 
the subcomponents of SGOMS (planning units, unit tasks, 
methods, and operators) so that the productions representing 
these units can be flexibly re-deployed during the task. The 
SGOMS macro architecture deploys these extra productions 
as efficiently as possible, but they still result in extra 
processing time due to the single production bottleneck in 
the ACT-R procedural memory system. Therefore, an 
SGOMS model will systematically vary from the optimal 
(fastest) model in ACT-R. 

Procedure 

Subjects 
Two of the authors, NN and FK volunteered as subjects.  

Method 
On each trial subjects were presented with a four letter cue 
code and had to respond with the appropriate two letter 
response code. Therefore, every trial was exactly the same 
in terms of response actions. The only difference was that 
sometimes participants knew what code followed another, 
and sometimes they needed to perceive the cue code to 
know which code to respond with.  

Subjects first learned the three unit tasks depicted in 
Figure 1. Subjects practiced until they were satisfied they 
had attained their best speed and accuracy. To do this, 
subjects trained at home on their laptop computers. Next, 
subjects memorized the three planning units, described in 
Table 1. Each planning unit was cued by a four-letter code 
and each was composed of the three unit tasks. Two of the 
planning units were ordered planning units, with the unit 
tasks in different orders. The third planning unit was a 
situated planning unit that cued each unit task once, in 
random order. Again, subjects practiced on their laptops at 
home until they were satisfied they were doing the task as 

quickly and accurately as possible. Once this stage was 
reached we collected the data for analysis. 

The optimal model worked in the following way: the code 
for the current planning unit was stored in the imaginal 
buffer (i.e., working memory) and the production 
representing the correct response was selected by matching 
with this information and the current code, which was in the 
visual buffer. The perceptual/motor methods were the same 
as the SGOMS model. 

 
 

 
Figure 1. Unit task structure: Each box represents a 

response within the unit task structure.  
 

Planning Unit Unit Task order 

Ordered Planning Unit 1 Unit Task 1 
Unit Task 2 
Unit Task 3 
 

Ordered Planning Unit 2 Unit Task 2  
Unit Task 3 
Unit Task 1 
 

Situated Planning Unit 3 Unit Task ? 
Unit Task ? 
Unit Task ? 

Table 1. Planning Unit structure.  

Results  
To evaluate the results we divided the trials into different 
categories corresponding to different predictions of the 
SGOMS architecture. In SGOMS, an action occurring 
inside a unit task occurs as it would in the optimal ACT-R 
model. That is, there is no overhead. These response 
categories were labeled Unknown Unit Task Middle 
(Unknown Mid UT) and Known Unit Task Middle (Known 

235



Mid UT), where Known refers to conditions in which the 
subject knew the next response and Unknown refers to 
conditions in which the subject had to read the new code to 
know the right response (see Figure 2).  

These two conditions formed the baseline for fitting the 
results. After we removed errors and outliers more than two 
standard deviations from the mean, we saw that FK's 
response times were considerably faster than NN. We 
assumed that this was a perceptual motor difference and 
equalized the response times for both baseline conditions by 
subtracting the difference between FK's average RT and 
NN's average RT from NN's average score. We applied this 
same correction to all of the other conditions according to 
whether the response was known or unknown.  

We also fit the SGOMS model and the optimal model to 
FK’s results for these two conditions. Since both models 
made the same predictions for the baseline conditions, and 
both used the same perceptual motor model, the adjustment 
was the same. Therefore, for the two baseline conditions, 

the adjusted results of the two subjects and two models were 
identical. Assuming that the perceptual/motor responses 
remained constant across the other conditions, all 
differences on the other conditions between the subjects and 
between the models were due to differences in cognitive 
processes. No adjustments or modifications were made for 
the other conditions 

Figure 2 shows the results with 0.05 confidence intervals 
for our subjects’ data. For all conditions NN was similar to 
the SGOMS model and dissimilar to the optimal model. For 
the bottom two conditions in Figure 2, NN falls outside the 
confidence intervals for the SGOMS model, but is still 
closer to the SGOMS model than the optimal model. FK 
was similar to NN and the SGOMS model for all except the 
bottom three conditions, where he was more similar to the 
optimal model. FK reported experimenting with specific 
strategies to speed up the task, which we believe accounts 
for the differences he showed.  

 

 
Figure 2. Human and model results. 

 

Conclusion 
Our results clearly show support for the SGOMS macro 
architecture. The SGOMS model provided a better fit to the 
data for six out of six response categories for NN and for 
three out of six response categories FK. For FK, in the three 
cases where the SGOMS model did not match the data, the 
optimal model provided a reasonable match. This pattern of 
results fits well with our claim that people use the SGOMS 
architecture as their default system, and only later convert to 
an optimal form if the task can be performed without 

interruptions and they have the motivation for thinking 
about it and practicing it.  
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